RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Equations of multimoment hydrodynamics in problem on flow around a sphere. 1. Construction of asymmetric distributions of hydrodynamic values

PII
305191-690182-1
DOI
10.7868/30182-1
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 6
Pages
86-96
Abstract
The equations of multimoment hydrodynamics are used to interpret flows behind the sphere that do not have axial symmetry. The equations of multimoment hydrodynamics follow from the equations for pair distribution functions. The derivation of the equations is free from approximations similar to the Boltzmann hypothesis. In accordance with the general approach, the pair function is represented as an infinite series of products of trajectory invariants with unknown coefficients. A finite number of terms are preserved in this series, which make it possible to construct asymmetric distributions of hydrodynamic values. Analytical expressions for the principal hydrodynamic values are presented. Solutions of nonlinear differential equations for unknown coefficients will make it possible to trace the evolution of the observed asymmetric flows, culminating in pronounced turbulence.
Keywords
многомоментная гидродинамика асимметричные распределения
Date of publication
16.06.2025
Year of publication
2025
Number of purchasers
0
Views
51

References

  1. 1. Лойцянский Л.Г. Механика жидкости и газа. М.: Наука, 1987.
  2. 2. Михалкин В.Н., Сумской С.И., Тереза А.М. и др. // Хим. физика. 2022. Т. 41. № 8. С. 3.
  3. 3. Лебедь И.В., Уманский С.Я. // Хим. физика. 2007. Т. 26. № 1. С. 65.
  4. 4. Lebed I.V. The foundations of multimoment hydro­dynamics. Part 1: Ideas, Methods and Equations. N-Y: Nova Science Publishers, 2018.
  5. 5. Lebed I.V. // Chem. Phys. Lett. 1990. V. 165. № 1–2. P. 226, https://doi.org/10.1016/0009-2614 (90)85433-D
  6. 6. Lebed I.V. // Physica A. 2019. V. 515. P. 715. https://doi.org/10.1016/j.physa.2018.09.166
  7. 7. Lebed I.V. // Physica A. 2019. V. 524. P. 325. https://doi.org/10.1016/j.physa.2019.04.086
  8. 8. Лебедь И.В. // Хим. физика. 1997. Т. 16. № 7. С. 72.
  9. 9. Лебедь И.В. // Хим. физика. 2014. Т. 33. № 4. С. 1.
  10. 10. Kiselev A.Ph., Lebed I.V. // Chaos, Solitons, Fractals. 2021. V. 142. № 110491. https://doi.org/10.1016/j.chaos.2020.110491
  11. 11. Лебедь И.В. // Хим. физика. 2022. Т. 41. № 4. С.81. https://doi.org/10.31857/S0207401X22040045
  12. 12. Лебедь И.В. // Хим. физика. 2023. Т. 42. № 9. С. 83. https://doi.org/10.31857/S0207401X23090054
  13. 13. Лебедь И.В. // Хим. физика. 2023. Т. 42. № 12. С. 86. https://doi.org/10.31857/S0207401X23120063
  14. 14. Лебедь И.В. // Хим. физика. 2024. Т. 43. № 9. С. 86.
  15. 15. Лебедь И.В. // Хим. физика. 2024. Т. 43. № 9. С. 97.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library