RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Equations of multimoment hydrodynamics in problem on flow around a sphere. 2. The basic asymmetric solution

PII
305192-690183-1
DOI
10.7868/30183-1
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 6
Pages
97-108
Abstract
The equations of multimoment hydrodynamics are used to interpret flows behind the sphere that do not have axial symmetry. In accordance with the general approach to solving the equations of multimoment hydrodynamics, a set of nonlinear first-order differential equations for unknown coefficients is derived. Numerical integration of the derived equations shows that a high value of the turbulence coefficient provides a transition from the basic axisymmetric solution to the basic weakly asymmetric solution. It was found that the asymmetric solution is not stable. The instability of the asymmetric solution creates prospects for interpreting the observed evolution of weakly asymmetric flow. It becomes possible to reproduce the vortex shedding observed at moderately high values of the Reynolds number. There are prospects for interpreting the turbulence that develops with a further increase in the Reynolds number.
Keywords
многомоментная гидродинамика неустойчивое решение
Date of publication
16.06.2025
Year of publication
2025
Number of purchasers
0
Views
51

References

  1. 1. Лебедь И.В . // Хим. физика. 2025. Т. 44. № 6. С.
  2. 2. Лебедь И.В. // Хим. физика. 1997. Т. 16. № 7. С. 72.
  3. 3. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Гостехиздат, 1953.
  4. 4. Lebed I.V. The foundations of multimoment hydrodynamics, Part 1: ideas, methods and equations. N.Y.: Nova Sci. Publ., 2018.
  5. 5. Glansdorff P., Prigogine I. Thermodynamic theory of structure, stability, and fluctuations. N.Y.: Willey, 1971.
  6. 6. Taneda S. // J. Phys. Soc. Jpn. 1956. V. 11. № 10. P. 1104. http:// doi.org/10.1143/JPSJ.11.1104
  7. 7. Chomaz J.M., Bonneton P., Hopfinger E.J. // J. Fluid Mech. 1993. V. 234. P. 1. http:// doi.org/10.1017/S0022112093002009
  8. 8. Magarvey R.H., Bishop R.L. // Canad. J. Phys. 1961. V. 39, №7. P. 1418.
  9. 9. Magarvey R.H., MacLatchy C.S. // Ibid. 1965. V. 43, № 9. P. 1649.
  10. 10. Winikow S., Chao B.T. // Phys. Fluids. 1966. V.9. №1. P. 50.
  11. 11. Sakamoto H., Haniu H. // J. Fluid Mech. 1995. V. 287. P. 151. http:// doi.org/10.1017/S0022112095000905
  12. 12. Schuster H.G. Deterministic chaos. Weinheim: Physik Verlag, 1984.
  13. 13. Natarajan R., A. Acrivos A. // J. Fluid Mech. 1993. V. 254. P. 323. http:// doi.org/10.1017/S0022112093002150
  14. 14. Tomboulides A.G., Orszag S.A. // Ibid. 2000. V. 416. P. 45. http:// doi.org/10.1017/S0022112000008880
  15. 15. Лебедь И.В. // Хим. физика. 2014. Т. 33. № 4. С. 1. http:// doi.org/10.7868/S0207401X14040074
  16. 16. Kiselev A.Ph., Lebed I.V. // Chaos, Solitons, Fractals. 2021. V. 142. №110491, http:// doi.org/10.1134/S1990793121030222
  17. 17. Лебедь И.В . // Хим. физика. 2022. Т. 41. № 4. С. 81. http:// doi.org/10.31857/S0207401X22040045
  18. 18. Лебедь И.В. // Хим. физика. 2023. Т. 42. № 9. С. 83. http:// doi.org/10.31857/S0207401X23090054
  19. 19. Лебедь И.В. // Хим. физика. 2024. Т. 43. № 9. С. 86.
  20. 20. Лебедь И.В. // Хим. физика. 2024. Т. 43. № 9. С. 97.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library