Экспериментально определены значения температуры воспламенения и оценены эффективные энергии активации пределов каталитического воспламенения смесей ((40÷70%)H2 + (60÷30%)CH4)стех + + воздух над металлическим родием при давлении 1.7 атм в температурном интервале 20–300 °C. Над поверхностью родия, обработанной воспламенениями, температура каталитического воспламенения смеси 70% H2 + 30% CH4 + воздух составляет 62 °C, что указывает на возможность использования родия для существенного снижения температуры воспламенения топлив на основе водородно-метановых смесей. Экспериментально обнаружен критический характер осуществления объемной реакции: объемный процесс происходит при [H2] = 45%, но отсутствует при концентрациях водорода ≤40%. Если [H2] ≤ 40%, происходит только медленная поверхностная каталитическая реакция. Это явление проиллюстрировано посредством качественного расчета. Установлено, что эффективные энергии активации как верхнего, так и нижнего пределов каталитического воспламенения стехиометрических смесей H2 + CH4 в диапазоне линейности равны примерно (2.5 ± 0.6) ккал/моль. Это означает, что ключевые реакции, ответственные за возникновение верхнего и нижнего пределов каталитического воспламенения, одинаковы. Показано, что при катализе родиевым катализатором процесс развития цепи, скорее всего, имеет гетерогенную природу, поскольку эффективная энергия активации составляет менее 3 ккал/моль.
Установлено, что определяющим фактором каталитического воспламенения смесей водорода с этаном и этиленом является химическая природа не только катализатора, но и углеводорода С2 в смеси с Н2. Показано, что пределы каталитического воспламенения синтез-газа над поверхностью металлического родия качественно отличаются от зависимостей для смесевого горючего водород–углеводород. Зависимость нижнего предела каталитического воспламенения от температуры имеет отчетливый максимум, что указывает на более сложный механизм каталитического процесса, чем в случае смесей водород–метан. Аррениусовская зависимость ln[H2]lim от 1/T не выполняется. Поэтому следует уточнить интерпретацию верхнего и нижнего пределов каталитического воспламенения, принятую в литературе. Относительно длительные периоды задержки каталитического воспламенения смесей водород–н-пентан (десятки секунд) и отсутствие их зависимости от начальной температуры позволяют сделать вывод, что каталитическое воспламенение смесей водород–пропан/н-пентан определяется скоростью переноса молекул углеводорода к поверхности каталитической проволоки. Таким образом, при окислении смесей водород–углеводород для легких углеводородов основным фактором, определяющим каталитическое воспламенение, является реакция окисления водорода на каталитической поверхности. При увеличении числа атомов углерода в углеводороде значительную роль начинают играть факторы, связанные с химической структурой (т.е. с реакционной способностью углеводорода при каталитическом окислении), и затем скорость окисления уже определяется скоростью диффузии углеводорода к поверхности катализатора.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации