Проведен анализ вклада от рекомбинации радикалов на поверхности примесной микрочастицы, находящейся в реагирующей смеси водород/кислород/аргон либо пропан/кислород/аргон, в нагрев микрочастицы. Проведена оценка возможного ускорения воспламенения от точечного очага в виде нагретой микрочастицы при температурах 800–1100 К в условиях, при которых наблюдается уменьшение задержек воспламенения в экспериментах в ударных трубах и установках быстрого сжатия. Показано, что в зависимости от размера микрочастицы и концентрации радикалов в смеси рекомбинационный нагрев микрочастицы на ранних стадиях горения может составлять от десятка до сотни градусов. Это может приводить к уменьшению задержки воспламенения в несколько раз. Предложенный механизм может быть рассмотрен как одна из возможностей устранения расхождения между экспериментально наблюдаемыми и рассчитываемыми с помощью детального кинетического механизма задержками воспламенения в указанных условиях.
Предложена модель расчета коэффициентов поверхностного натяжения сферического облака из заряженных микрочастиц в плазме. Рассчитаны коэффициенты поверхностного натяжения кулоновских сфер, полученных в тлеющем разряде низкого давления в неоне при температурах 77 и 295 К для частиц диаметром 4 и 2 мкм соответственно. Определена потенциальная энергия микрочастиц на поверхности сферы. В проведенных расчетах применялась гидродинамическая модель положительного столба разряда с заряженными микрочастицами. Полученные значения коэффициента поверхностного натяжения кулоновских сфер по величине на несколько порядков меньше, чем у шаровых молний. Предложена гипотеза образования кулоновских сфер в атмосфере Земли.
Численно определены параметры плазмы тлеющего разряда низкого давления в неоне с микрочастицами, при которых реализуются области с равными значениями эффективности удержания ионов в облаке микрочастиц. Отмечено, что подобные особенности характерны для диссипативных синергетических систем, контролируемых обратной связью. Моделирование комплексной плазмы тлеющего разряда в неоне с микрочастицами показало, что обратная связь в плазме реализуется через источник основных потерь ее энергии – облако микрочастиц. Контроль за изменением параметров разряда путем варьирования концентрации микрочастиц в облаке дает возможность управлять концентрацией ионов в плазме.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации