Проведено математическое моделирование неидеальной детонации трехкомпонентных смесей нитрометана (НМ) и перхлората аммония (ПХА) с большим избытком алюминия. Использована модель, разработанная ранее, в которой экзотермическое превращение смеси протекает в три стадии, включающих разложение НМ и ПХА и диффузионное горение алюминия. Расчеты дали хорошие согласие с опытными данными по скорости детонации в стальных оболочках диаметром 18 мм с варьированием в широком диапазоне содержания НМ и соотношения Al/ПХА в смесях. Значения констант скоростей превращения НМ и ПХА, которые использовались при моделировании детонации тройных смесей, определялись из наилучшего согласия расчетов с экспериментами со смесью НМ + 54% ПХА по установлению зависимости скорости детонации от диаметра заряда. Показатели степени по давлению были положены равными единице. При изменении соотношения компонентов расчеты, проведенные с теми же константами превращения, дали хорошее согласие с опытными данными. Именно на этом основании выбранные значения использовались для расчетов детонации тройных смесей. Низкая скорость превращения ПХА по сравнению с НМ приводит к тому, что длина зоны реакции детонационной волны достигает 10 мм. Количество сгоревшего ПХА составляет чуть меньше половины в смесях с соотношением Al/ПХА 1 : 1 и чуть больше одной трети при отношении Al/ПХА 2 : 1.
Ранее путем сопоставления результатов математического моделирования с экспериментальными данными по скорости неидеальной детонации тройных смесей нитрометана и перхлората аммония с избытком алюминия были определены скорости экзотермических реакций и степень превращения компонентов в пределах зоны реакции детонационной волны. Для расчетов использовалась квазиодномерная модель стационарной детонации, в которой все компоненты имеют общее давление и движутся с общей массовой скоростью, а экзотермическое превращение осуществляется в три стадии, которые включают разложение нитрометана и перхлората аммония и диффузионное горение алюминия. Чтобы подтвердить полученные результаты и применимость сравнительно простой теоретической модели, проведены расчеты профиля массовой скорости при детонации одной из тройных смесей с содержанием нитрометана 17%. Расчеты находятся в согласии с измеренным профилем массовой скорости по форме профиля, амплитуде и темпу спада массовой скорости вдоль зоны реакции детонационной волны. Дана оценка времени нарастания сигнала датчика с учетом рассчитанной кривизны ударного фронта детонационной волны.
С помощью квазиодномерной модели стационарной детонации с дивергентным течением в зоне реакции проведен анализ массива экспериментальных данных по скорости детонации мелкодисперсного перхлората аммония, который был получен в свое время в работе Донны Прайс с сотр. из Лаборатории NOL США. В опытах в широком диапазоне варьировались значения диаметра и начальной плотности заряда. В результате анализа определены величины двух коэффициентов, входящих в уравнение скорости экзотермического превращения перхлората аммония (показатель степени по давлению и константа скорости ), при которых расчеты согласуются с экспериментом по зависимости скорости детонации от диаметра заряда для пяти различных значений начальной плотности. Во всех расчетах показатель степени оказался равным 1.0, а константа снижалась более чем в 4 раза по мере того, как начальная плотность увеличивалась от 1.0 до 1.45 г/см. Рассчитаны характеристики течения в зоне реакции детонационной волны. Фронт детонационной волны имеет форму, близкую к сферически-симметричной только на оси заряда и вблизи нее. Радиус кривизны фронта, который на оси заряда близок по величине к диаметру заряда, по мере приближения к боковой кромке уменьшается в 4–5 раз. Вместе с радиусом кривизны вблизи боковой кромки заряда существенно снижается давление на фронте волны. Ширина зоны реакции, от фронта волны до точки Чепмена–Жуге, составляет около 3 мм и увеличивается по мере роста плотности. Анализ для околокритических условий, близких к срыву детонации, показал, что значительное снижение градиента массовой скорости на фронте волны за счет потерь энергии в боковой волне разрежения наблюдается на боковой кромке заряда и отсутствует на его оси. Таким образом, именно кромку заряда следует рассматривать как место, где в результате снижения скорости экзотермического превращения и роста потерь энергии в боковой волне разрежения формируются условия для срыва детонации.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации