RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Formation of ionic networks in molten salt mixtures. Computer experiment

PII
S0207401X25010017-1
DOI
10.31857/S0207401X25010017
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 1
Pages
3-15
Abstract
Molten salts are used as heat-conducting media in liquid salt reactors and solar installations. Knowledge of the thermal conductivity of molten salt is necessary for the safe operation of these units. Computational methods are an alternative way to the hard-to-reach experimental way of determining thermal conductivity. In this work, the temperature dependence of the thermal conductivity of the molten salt FLiNaK, as well as this molten salt with NdF3 dissolved in it, was calculated using the method of equilibrium molecular dynamics. The temperature trend of thermal conductivity, as well as its change after the dissolution of NdF3 in FLiNaK, is explained based on the determination of the dynamic network of ionic bonds that exists in the molten salt model. Networks of ionic bonds were established with an upper limit of interionic distance of 0.2 nm for both types of salt melts and with a limit of 0.27 nm for the Nd–F network in a melt containing NdF3. These networks of bonds appear in different parts of the system over time and may disappear completely. The total number of dynamic network nodes, determined during the correlation of heat flows, has an impact on the thermal conductivity value of the simulated system. A new method for interpreting the temperature behavior of the thermal conductivity of molten salt in a computer model can be used for predictive purposes when fluorides of various lanthanides and actinides are dissolved in salt melts.
Keywords
динамическая ионная связь молекулярная динамика расплавленная соль теплопроводность фонон фторид
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
10

References

  1. 1. Halliday C., Hatton T.A. // Appl. Energy. 2020. V. 280. Art. № 116016. https://doi.org/10.1016/j.apenergy.2020.116016
  2. 2. Sorbom N., Ball J., Palmer T.R. et al. // Fusion Eng. Des. 2015. V. 100. P. 378. https://doi.org/10.1016/j.fusengdes.2015.07.008
  3. 3. Akanda M.A.M., Shin D. // J. Ener. Storage. 2023. V. 60. Art. № 106608. https://doi.org/10.1016/j.est.2023.106608
  4. 4. Игнатьева Л.Н., Машенко В.А., Горбенко О.М., Бузник В.М. // Хим. физика 2023. № 11. С. 23. https://doi.org/10.31857/S0207401X23110031
  5. 5. Froese B. C. // Adsorption of Neodymium Experiment Design to Simulate Nuclear Fuel Reprocessing. Syracuse: University Honors Program Capstone Projects, 2011. P. 5–14. https://surface.syr.edu/honors_capstone/249
  6. 6. Cervi E., Lorenzi A., Cammi A., Luzzi L. // Chem. Eng. Sci. 2019. V. 193. P. 379. https://doi.org/10.1016/j.ces.2018.09.025
  7. 7. Nunes V.M.B., Lourenco M.J.V., Santos F.J.V., Nieto de Castro C.A. // J. Chem. Eng. Data. 2003. V. 48. № 3. P. 446. https://doi.org/10.1021/je020160l
  8. 8. Gheribi A.E., Chartrand P. // J. Chem. Phys. 2016. V. 144. № 8. P. 084506. https://doi.org/10.1063/1.4942197
  9. 9. Gheribi A.E., Torres J.A., Chartrand P. // Sol. Energy Mater. Sol. Cells. 2014. V. 126. P. 11. https://doi.org/10.1016/j.solmat.2014.03.028
  10. 10. Ross R.G. // Rep. Prog. Phys. 1984. V. 47. № 10. P. 1347. https://doi.org/10.1088/0034-4885/47/10/002
  11. 11. Romatoski R.R., Hu L.W. // Ann. Nucl. Energy. 2017. V. 109. № 2–3. P. 635. https://doi.org/10.1016/j.anucene.2017.05.036
  12. 12. An X.-H., Cheng J.-H., Yin H.-Q., Xie L.-D., Zhang P. // Intern. J. Heat Mass Transfer. 2015. V. 90. P. 872. https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.042
  13. 13. Robertson S.G., Wiser R., Yang W. et al. // J. Appl. Phys. 2022. V. 131. № 22. 225102. https://doi.org/10.1063/5.0088059
  14. 14. Nagasaka Y., Nakazawa N., Nagashima A. // Intern. J. Thermophys. 1992. V. 13. № 4. P. 555. https://doi.org/10.1007/BF00501941
  15. 15. Robertson G., Short M.P. // Rev. Sci. Instrum. 2021. V. 92. Art. № 064905. https://doi.org/10.1063/5.0049727
  16. 16. Copley J.R.D., Rowe J.M. // Phys. Rev. Lett. 1974. V. 32. № 2. P. 49. https://doi.org/10.1103/PhysRevLett.32.49
  17. 17. Demmel F., Hosokawa S., Pilgrim W.-C. // J. Phys.: Condens. Matter. 2021. V. 33. № 37. Art. № 375103. https://doi.org/10.1088/1361-648X/ac101c
  18. 18. Hosokawa S., Demmel F., Pilgrim W.-C. et al. // Electrochem. 2009. V. 77. № 8. P. 608. https://doi.org/10.5796/electrochemistry.77.608
  19. 19. Bryk T., Mryglod I.M. // J. Mol. Liquids. 2005. V. 120. № 1–3. P. 83. https://doi.org/10.1016/j.molliq.2004.07.041
  20. 20. Кишевецкий С.П., Курдяева Ю.А., Гаврилов Н.М. // Хим. физика. 2023. Т. 42. № 10. С. 77. https://doi.org/10.31857/S0207401X23100096
  21. 21. Tosi M.P., Fumi F.G. // J. Phys. Chem. Solids. 1964. V. 25. № 1. P. 45. https://doi.org/10.1016/0022-3697 (64)90160-x
  22. 22. Adams D.J., McDonald I.R. // J. Phys. C: Sol. State Phys. 1974. V. 7. № 16. P. 2761. https://doi.org/10.1088/0022-3719/7/16/009
  23. 23. Pauling L. // J. Amer. Chem. Soc. 1929. V. 51. № 4. P. 1010. https://doi.org/10.1021/ja01379a006
  24. 24. Galashev A.Y., Rakhmanova O.R., Abramova K.A. et al. // J. Phys. Chem. B. 2023. V. 127. № 5. P. 1197. https://doi.org/10.1021/acs.jpcb.2c06915
  25. 25. Mayer J.E. // J. Chem. Phys. 1933. V. 1. № 4. P. 270. https://doi.org/10.1063/1.1749283
  26. 26. Wang H. Ph.D. Dis. Molecular dynamics simulations of molten salts: Force field evaluation and development. Indiana, Notre Dame: University of Notre Dame, 2022.
  27. 27. Ishii Y., Sato K., Salanne M., Madden P.A., Ohtori N. // J. Phys. Chem. B. 2014. V. 118. № 12. P. 3385. https://doi.org/10.1021/jp411781n
  28. 28. Руденко Е.И., Дохликова Н.В., Гатин А.К., Сарвадий С.Ю., Гришин М.В. // Хим. физика. 2023. Т. 42. № 7. С. 70. https://doi.org/10.31857/50207401X23070166
  29. 29. Cordero B., Gomes V., Platero-Prats A. et al. // Dalton Trans. 2008. V. 21. № 21. P. 2832. https://doi.org/10.1039/b801115j
  30. 30. Thakur S., Dionne C.J., Karna P., King S.W., Lanford W. // Phys. Rev. Mater. 2022. V. 6. Art. № 094601. https://doi.org/10.1103/PhysRevMaterials.6.094601
  31. 31. Rudenko A., Redkin A., Il’ina E. et al. // Materials. 2022. V. 15. № 16. Art. № 5603. https://doi.org/10.3390/ma15165603
  32. 32. Braun I.L., King S.W., Giri A. et al. // Appl. Phys. Lett. 2016. V. 109. № 19. Art.№ 191905. https://doi.org/10.1063/1.4967309
  33. 33. Возняковский А.А., Возняковский А.П., Кидалов С.В., Заваринский В.И. // Хим. физика. 2021. Т. 40. № 6. С. 14. https://doi.org/10.31857/S0207401X21060169
  34. 34. Xu R.L., Rojo M.M., Islam S.M. et al. // J. Appl. Phys. 2019. V. 126. № 18. Art.№ 185105. https://doi.org/10.1063/1.5097172
  35. 35. Galashev A.Y. // Appl. Sci. 2023. V. 13, № 2. P. 1085. https://doi.org/10.3390/app13021085
  36. 36. Özen A.S., Akdeniz Z. // J. Mol. Liquids. 2022. V. 368. Part B. P. 120771. https://doi.org/10.1016/j.molliq.2022.120771
  37. 37. Li J., Guo H., Zhang H., Li T., Gong Y. // Chem. Phys. Lett. 2019. V. 718, P. 63. https://doi.org/10.1016/j.cplett.2019.01.035
  38. 38. Bessada C., Zanghi D., Salanne M. et al. // J. Mol. Liquids. 2020. V. 307. № 2. Art. № 112927. https://doi.org/10.1016/j.molliq.2020.112927
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library