- Код статьи
- S0207401X25010105-1
- DOI
- 10.31857/S0207401X25010105
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 44 / Номер выпуска 1
- Страницы
- 90-95
- Аннотация
- Исследовано влияние метода синтеза композитов NiO–In2O3 на их структурные, проводящие и сенсорные характеристики при детектировании водорода. Использовались импрегнирование наночастиц оксида индия солью нитрата никеля и гидротермальный метод с водными растворами соответствующих солей. Показано, что в процессе импрегнирования формируется оксид никеля в виде аморфных наночастиц на поверхности оксида индия, а при гидротермальной обработке ионы никеля внедряются в структуры In2O3. В импрегнированных композитах размер частиц оксида индия не зависит от состава и составляет 60 нм, в то время как в гидротермальных композитах он уменьшается от 35 до 30 нм при увеличении содержания никеля. С увеличением содержания никеля от 0 до 3 вес. % для обоих методов синтеза проводимость падает, а сопротивление для гидротермальных образцов на порядок выше, чем в импрегнированных. Практически в два раза выше оказался и сенсорный отклик.
- Ключевые слова
- композит гидротермальный метод метод импрегнирования оксид индия проводимость сенсорный отклик водород
- Дата публикации
- 14.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 7
Библиография
- 1. Li Q., Zeng W., Li Y. // Sens. Actuators, B. 2022. V. 359. P. 131579.
- 2. Zhang C., Xu K., Liu K., Xu J., Zheng Z. // Coord. Chem. Rev. 2022. V. 472. P. 214758.
- 3. Krishna K.G., Parne S., Pothukanuri N. et al. // Sens. Actuators, A. 2022. V. 341. P. 113578.
- 4. Trakhtenberg L.I., Ikim M.I., Ilegbusi O.J., Gromov V.F., Gerasimov G.N. // Chemosens. 2023. V. 11 № 6. P. 320.
- 5. Yan S., Song W., Wu D., Jin S., Dong S., Hao H., Gao W. // J. Alloys Compd. 2022. V. 896. P. 162887.
- 6. Иким М.И., Спиридонова Е.Ю., Громов В.Ф., Герасимов Г.Н., Трахтенберг Л.И. // Хим. физика. 2023. Т. 42. № 5. С. 71.
- 7. Jimenez L.C., Mendez H.A., Paez B.A., Ramırez M.E., Rodrıguez H. // Braz. J. Phys. 2006. V. 36. P. 1017.
- 8. Prathap P., Gowri D.G., Subbaiah Y.P.V., Ramakrishna R.K.T., Ganesan V. // Current Appl. Phys. 2008. V. 8. P. 120.
- 9. Герасимов Г.Н., Громов В.Ф., Иким М.И., Трахтенберг Л.И. // Хим. физика. 2021. Т. 40. № 11. С. 65.
- 10. Fan X., Xu Y., He, W. // RSC Advances. 2021. V. 11. № 19. P. 11215.
- 11. Zhang Y., Cao J., Wang Y. // Vacuum. 2022. V. 202. P. 111149.
- 12. Jin Z., Wang C., Wu L. et al. // Sens. Actuators, B. 2023. V. 377. P. 133058.
- 13. Иким М.И., Спиридонова Е.Ю., Громов В.Ф., Герасимов Г.Н., Трахтенберг Л.И. // Хим. физика. 2022. Т. 41. № 12. С. 79.
- 14. Громов В.Ф., Иким М.И., Герасимов Г.Н., Трахтенберг Л.И. // Хим. физика. 2021. Т. 40. № 12. С. 76.
- 15. Иким М.И., Спиридонова Е.Ю., Громов В.Ф., Герасимов Г.Н., Трахтенберг Л.И. // Хим. физика. 2024. Т. 43. № 1. С. 102
- 16. Wang Y., Yao M., Guan R., Zhang Z., Cao J. // J. Alloys Compd. 2021. V. 854. P. 157169.
- 17. Ikim M.I., Gromov V.F., Gerasimov G.N. et al. // Micromachines. 2023. V. 14(9). P. 1685.