- Код статьи
- S0207401X25020016-1
- DOI
- 10.31857/S0207401X25020016
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 44 / Номер выпуска 2
- Страницы
- 3-21
- Аннотация
- Рассмотрены термодинамические и кинетические аспекты коррозии низкоуглеродистых сталей в потоке раствора H2SO4, содержащего Fe2(SO4)3, включая среды ингибированные смесью четвертичной аммониевой соли и KI, протекающей путем параллельного взаимодействия металла с кислотой и солью Fe(III). Потенциометрические исследования раствора H2SO4, содержащего соли Fe(III) и Fe(II), показали, что катионы Fe(III) в этих средах связаны в комплексы с сульфат–анионами, что снижает их окислительные свойства. Вольтамперные исследования поведения стали в потоке раствора H2SO4, содержащего Fe2(SO4)3, указывают на то, что коррозия включает реакцию анодной ионизации железа, протекающую в кинетической области, и две катодные парциальные реакции − выделение водорода и восстановление катионов Fe(III) до Fe(II), которые характеризуются, соответственно, кинетическим и диффузионным контролем. Последняя реакция, протекающая с диффузионным контролем, определяет чувствительность всего коррозионного процесса к гидродинамическим параметрам агрессивной среды и концентрации в ней Fe2(SO4)3. Исследована зависимость скорости коррозии стали от частоты вращения пропеллерной мешалки, используемой для перемешивания раствора. Слабое торможение смесевым ингибитором коррозии стали в растворах H2SO4, содержащих Fe2(SO4)3, – результат ускоряющего воздействия катионов Fe(III) на три парциальные электродные реакции железа.
- Ключевые слова
- диффузионная кинетика кислотная коррозия низкоуглеродистая сталь серная кислота сульфат железа (III) ингибиторы коррозии коррозия в потоке среды
- Дата публикации
- 14.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 1
Библиография
- 1. Avdeev Ya.G., Kuznetsov Yu.I. // Intern. J. Corros. Scale Inhib. 2022. V. 11. № 1. P. 111. https://doi.org/10.17675/2305-6894-2022-11-1-6
- 2. Кузнецов Ю.И. // Успехи химии. 2004. Т. 73. № 1. С. 79.
- 3. Barthel J., Deiss R. // Mater. Corros. 2021. V. 72. № 3. P. 434. https://doi.org/10.1002/maco.202011977
- 4. Perry S.C., Gateman S.M., Stephens, L.I. et al. // J. Electrochem. Soc. 2019. V. 166. № 11. P. C3186. https://doi.org/10.1149/2.0111911jes
- 5. Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solutions. Houston: National Association of Corrosion Engineers, 1974.
- 6. Кеше Г. Коррозия металлов: физико–химические принципы и актуальные проблемы / Под. ред. акад. Колотыркина Я.М. Пер. с нем. М.: Металлургия, 1984.
- 7. Плетнев М.А., Решетников С.М. // Защита металлов. 2004. Т. 40. № 5. С. 513.
- 8. Антропов Л.И. Теоретическая электрохимия. Учеб. М.: Высшая школа, 1965. С. 348.
- 9. Bockris J.O’M., Drazic D., Despic A.R. // Electrochim. Acta. 1961. V. 4. № 2–4, P. 325. https://doi.org/10.1016/0013-4686 (61)80026-1
- 10. Florianovich G.M., Sokolova L.A., Kolotyrkin Ya.M. // Ibid. 1967. V. 12. № 7. P. 879. https://doi.org/10.1016/0013-4686 (67)80124-5
- 11. Авдеев Я.Г., Андреева Т.Э. // Журн. физ. химии. 2021. Т. 95. № 6. С. 875. https://doi.org/10.31857/S0044453721060029
- 12. Авдеев Я.Г., Ненашева Т.А., Лучкин А.Ю. и др. // Хим. физика. 2024. Т. 43. № 1. С. 24. https://doi.org/10.31857/S0207401X24010033
- 13. Umoren S.A., Solomon M.M. // J. Ind. Eng. Chem. 2015. V. 21. P. 81. https://doi.org/10.1016/j.jiec.2014.09.033
- 14. Захаров В.А., Сонгина О.А., Бектурова Г.Б. // Журн. аналит. химии. 1976. Т. 31. № 11. С. 2212.
- 15. Techniques of electrochemistry: Electrode Processes. / Eds.: Yeager E., Salkind A.J. New York: John Wiley & Sons, 1972. V. 1.
- 16. Лурье Ю.Ю. Справочник по аналитической химии. Изд. 4–е, перераб. и доп. М.: Химия, 1971.
- 17. Casas J.M., Crisóstomo G., Cifuentes L. // Hydrometallurgy (Netherlands). 2005. V. 80. № 4. P. 254. https://doi.org/10.1016/j.hydromet.2005.07.012
- 18. Yue G., Zhao L., Olvera O.G. et al. // Ibid. 2014. V. 147–148. P. 196. https://doi.org/10.1016/j.hydromet.2014.05.008
- 19. Whiteker R.A., Davidson N. // J. Amer. Chem. Soc. 1953. V. 75. № 13. P. 3081. https://doi.org/10.1021/ja01109a010
- 20. Sobron P., Rull F., Sobron F. et al. // Spectrochim. Acta. Part A. 2007. V. 68. № 4. P. 1138. https://doi.org/10.1016/j.saa.2007.06.044
- 21. Majzlan J., Myneni S.C.B. // Environ. Sci. Technol. 2005. V. 39. № 1. P. 188. https://doi.org/10.1021/es049664p
- 22. Плэмбек Дж. Электрохимические методы анализа. Основы теории и применения. Пер. с англ. М.: Мир, 1985.
- 23. Решетников С.М. Ингибиторы кислотной коррозии металлов. Л.: Химия, 1986.
- 24. Плесков Ю.В., Филиновский В.Ю. Вращающийся дисковый электрод. М: Наука, 1972.
- 25. Rotating Electrode Methods and Oxygen Reduction Electrocatalysts. Eds. Xing W., Yin G., Zhang J. 1st ed. Amsterdam: Elsevier B.V., 2014. Ch. 5. P. 171. https://doi.org/10.1016/B978-0-444-63278-4.00005-7
- 26. Ibid. Ch. 6. P. 199. https://doi.org/10.1016/B978-0-444-63278-4.00006-9
- 27. Краткий справочник физико–химических величин. Изд. 5–е, перераб. и доп. / Под ред. Мищенко К.П. и Равделя А.А. Л.: Химия, 1967.
- 28. Итоги науки и техники. Сер. Коррозия и защита от коррозии. Т. 2. М.: ВИНИТИ, 1973. С. 27.
- 29. Avdeev Ya.G., Kireeva O.A., Kuznetsov D.S. et al. // Prot. Met. Phys. Chem. Surf. 2018. V. 54. № 7. P. 1298. https://doi.org/10.1134/S2070205118070055
- 30. Зайченко А.Ю., Подлесный Д.Н., Салганская М.В. и др. // Хим. физика. 2021. Т. 40. № 8. С. 3. https://doi.org/10.31857/S0207401X21080148
- 31. Беляев А.А., Ермолаев Б.С. // Хим. физика. 2023. Т. 42. № 8. С. 3. https://doi.org/10.31857/S0207401X23080034
- 32. Буравцев Н.Н. // Хим. физика. 2022. Т. 41. № 3. С. 3. https://doi.org/10.31857/S0207401X22030037