RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Properties of water adsorbed in porous silica gels with different shapes of microparticle

PII
S0207401X25030072-1
DOI
10.31857/S0207401X25030072
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 3
Pages
65-78
Abstract
A comparison was made of the relaxation, diffusion and calorimetric characteristics of samples with different water content in the pores of Separon SGX and Silasorb 600 silica gels, which differ in the shape (regular and irregular) of microparticles. It has been shown that the layer of water experiencing the relaxation effect of the surface in the pores has constant dimensions for these silica gels. It has been established that the surface relaxation efficiency, the ratio of relaxation times T1 /T2, which reflects the phase state of water, does not change depending on the water content in the sample. It was found that the patterns of changes in the time of spin-lattice T1 and spin-spin T2 relaxation of water protons, the amount of freezing (FW) and non-crystallizing (NFW) water when changing the moisture content in samples with different shapes of silica gel microparticles have a similar character. The dependence of diffusion coefficients on the water content in silica gels made it possible to calculate the value of the characteristic pore parameter S/V and compare it with the characteristics declared by the manufacturer. The noticeable deviation for Silasorb 600 can be explained both by the difference in the distribution of pore sizes and by the difference in the nature of diffusion processes, which is a consequence of the irregular shape of the microparticles.
Keywords
силикагель вода ЯМР-релаксация ДСК,ЯМР-диффузометрия
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
8

References

  1. 1. Peschel G., Aldfinger K.H. // J. Colloid Interface Sci. 1970. V. 34. № 4. Р. 505. https://doi.org/10.1016/0021-9797 (70)90212-2
  2. 2. Etzler F.M., Conners J.J. // Langmuir. 1991. V. 7. P. 2293.
  3. 3. Polnaszek C.F., Hanggi D.A., Carr P.W. et al. // Anal. Chim. Acta. 1987. V. 194(C). P. 311. https://doi.org/10.1016/S0003-2670 (00)84786-8
  4. 4. Metzik M.S., Perevertaev G.D., Liopo V.A. et al. // J. Colloid Interface Sci. 1973. V. 43. № 3. Р. 662. https://doi.org/10.1016/0021-9797 (73)90412-8
  5. 5. Morariu V.V., Mills R. // Z. Phys. Chem. 1972. V. 79. № 1-2. Р. 1. https://doi.org/10.1524/zpch.1972.79.1_2.001
  6. 6. Brownstein K.R., Tarr C.E. // Phys. Rev. A. 1979. V. 19. № 6. Р. 2446. https://doi.org/10.1103/PhysRevA.19.2446
  7. 7. Troyer W.E., Holly R., Peemoeller H. et al. // Solid State Nucl. Magn. Reson. 2005. V. 28. № 2–4. Р. 238. https://doi.org/ 10.1016/j.ssnmr.2005.10.003
  8. 8. Cadar C., Cotet C., Baia L. et al. // Microporous Mesoporous Mater. 2017. V. 251. P. 19. https://doi.org/10.1016/j.micromeso.2017.05.033
  9. 9. Krzyżak A.T., Habina I. // Ibid. 2016. V. 231. P. 230. https://doi.org/10.1016/j.micromeso.2016.05.032
  10. 10. Jackson C.L., McKenna G.B. // J. Chem. Phys. 1990. V. 93. № 12. Р. 9002. https://doi.org/10.1063/1.459240
  11. 11. Strange H., Rahman M.E., Smith G. // Phys. Rev. Lett. 1993. V. 71. № 21. Р. 3589. https://doi.org/10.1103/physrevlett.71.3589
  12. 12. Модифицированные кремнеземы в сорбции, катализе и хроматографии / Под ред. Лисичкина Г.В. М.: Химия, 1986.
  13. 13. Reversed Phase Chromatography. LCGC´s CROMacademy. Р. 29; www.chromacademy.com
  14. 14. Ishikiriyama K., Todoki M. // Thermochim. Acta. 1995. V. 256. № 2. Р. 213. https://doi.org/10.1016/0040-6031 (94)02174-m
  15. 15. Зарипов Р.Б., Хайрутдинов И.Т., Салихов К.М. // Хим. физика. 2021. T. 40. № 6. С. 27. https://doi.org/10.31857/S0207401X21060170
  16. 16. Лундин А.А., Зобов В.Е. // Хим. физика. 2021. T. 40. № 9. С. 41. https://doi.org/10.31857/S0207401X21090077
  17. 17. Stejskal E.O., Tanner J.E. // J. Chem. Phys. 1965. V. 42. № 1. P. 288. https://doi.org/10.1063/1.1695690
  18. 18. Halperin W., Bhattacharja S., D’Orazio F. // Magn. Reson. Imaging. 1991. V. 9. № 5. Р. 733. https://doi.org/10.1016/0730-725X (91)90365-S
  19. 19. Veith S.R., Hughes E., Vuataz G. et al. // J. Colloid Interface Sci. 2004. V. 274. № 1. Р. 216. https://doi.org/10.1016/j.jcis.2003.12.036
  20. 20. Odintsov B.M., Temnikov A.N., Idiyatullin Z.Sh. et al. // Colloids Surf., A. 1999. V. 157. № 1–3. P. 177. https://doi.org/10.1016/S0927-7757 (99)00002-3
  21. 21. Mitchell J., Webber J.B.W., Strange J.H. et al. // Phys. Rep. 2008. V. 461. № 1. Р. 1. https://doi.org/10.1016/j.physrep.2008.02.001
  22. 22. Cohen M.H., Mendelson K.S. // J. Appl. Phys. 1982. V. 53. № 2. Р. 1127. https://doi.org/10.1063/1.330526
  23. 23. Rennie G., Clifford J. // J. Chem. Soc., Faraday Trans. 1. 1977. V. 73. P. 680. https://doi.org/10.1039/F19777300680
  24. 24. Валов А.Ф., Аветисов В.А. // Хим. физика. 2022. Т. 41. № 5. С. 171. https://doi.org/10.31857/S0207401X22050107
  25. 25. Mitra P.P., Sen P.N., Schwartz L.M. // Phys. Rev. B. 1993. V. 47. P. 8565. https://doi.org/10.1103/PhysRevB.47.8565
  26. 26. Tanis-Kanbur M.B., Peinador R.I., Calvo J.I. et al. // J. Membr. Sci. 2021. V. 619. P. 118750. https://doi.org/10.1016/j.memsci.2020.118750
  27. 27. Niknam M., Liang J., Walia J. et al. // Microporous Mesoporous Mater. 2012. V. 162. Р. 136. https://doi.org/10.1016/j.micromeso.2012.06.010
  28. 28. Hills B.P., Takacs S.F., Belton P.S. // Mol. Phys. 1989. V. 67. № 4. Р. 919. https://doi.org/10.1080/00268978900101541
  29. 29. Hills B.P., Takacs S.F., Belton P.S. // Ibid. P. 903. https://doi.org/10.1080/00268978900101531
  30. 30. Carver J.P., Richards R.E. // J. Magn. Reson. 1972. V. 6. № 1. P. 89. https://doi.org/10.1016/0022-2364 (72)90090-X
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library