RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Magnetic nanoparticles as a platform for delivery of the photosensitizer methylene blue to HCT116 tumor cells

PII
S0207401X25030119-1
DOI
10.31857/S0207401X25030119
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 3
Pages
106-110
Abstract
Hybrid nanosystems based on magnetic iron oxide nanoparticles (IONPs) and human serum albumin (HSA), containing methylene blue (MB) as a model photosensitizer, have been synthesized. The resulting HSA@IONP nanosystems were characterized for size and composition using UV/visible spectrophotometry (particularly, using the Bradford method), dynamic light scattering, and electron magnetic resonance. A study of the dark and photoinduced cytotoxicity of MB, IONP, HSA@IONP, MB–IONP, MB–(HSA@IONP) on of human colon adenocarcinoma HCT116 cells was carried out. Under the experimental conditions, the difference between the dark and light-induced cytotoxicity of nanosystems on cells was significantly enhanced when the photosensitizer was immobilized on the surface of the carrier particles compared to free photosensitizer in equivalent concentrations.
Keywords
человеческий сывороточный альбумин наночастицы оксидов железа магнитные наночастицы фотодинамическая терапия гибридные наноразмерные системы метиленовый синий клеточная линия HCT116
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Chen Q., Liu Z. // Adv. Mater. 2016. V. 28. № 47. P. 10557.
  2. 2. Israel L.L., Galstyan A., Holler E. et al. // J. Control. Release. 2020. V. 320. P. 45.
  3. 3. Chubarov A.S. // Magnetochemistry. 2022. V. 8. № 2. P. 13.
  4. 4. Бердникова Н.Г., Донцов А.Е., Ерохина М.В. и др. // Хим. физика. 2019. Т. 38. № 12. С. 48. https://doi.org/10.1134/S0207401X19120045
  5. 5. Menshutina N.V., Uvarova A.A., Mochalova M.S. et al. // Russ J. Phys Chem. B. 2023. V. 17. № 7. P. 1507. https://doi.org/10.1134/S1990793123070163
  6. 6. Колыванова М.А., Климович М.А., Дементьева О.В. и др. // Хим. физика. 2023. Т. 42. № 1. С. 64. https://doi.org/10.31857/S0207401X23010065
  7. 7. Поволоцкий А.В., Солдатова Д.А., Лукьянов Д.А., Соловьёва Е.В. // Хим. физика. 2023. T. 42. № 12. С. 70. https://doi.org/10.31857/S0207401X23120087
  8. 8. Tardivo J.P., Del Giglio A., de Oliveira C.S. et al. // Photodiagnosis Photodyn. Ther. 2005. V. 2. № 3. P. 175.
  9. 9. Zhang Y., Ye Z., He R. et al. // Colloids Surf. B. 2023. V. 224. P. 113201.
  10. 10. Toledo V.H., Yoshimura T.M., Pereira S.T. et al. // J. Photochem. Photobiol. B. 2020. V. 209. P. 111956.
  11. 11. Rodrigues J.A., Correia J.H. // Intern. J. Mol. Sci. 2023. V. 24. P. 12204.
  12. 12. Бурцев И.Д., Егоров А.Е., Костюков А.А. и др. // Хим. физика. 2022. Т. 41. № 2. С. 41. https://doi.org/10.31857/S0207401X22020029
  13. 13. Климович М.А., Сажина Н.Н., Радченко А.Ш. и др. // Хим. физика. 2021. Т. 40. № 2. С. 33. https://doi.org/10.31857/S0207401X21020084
  14. 14. Bychkova A.V., Yakunina M.N., Lopukhova M.V. et al. // Pharmaceutics. 2022. V. 14. № 12. P. 2771.
  15. 15. Nguyen M.T., Guseva E.V., Ataeva A.N. et al. // Intern. J. Mol. Sci. 2023. V. 24. P. 7995.
  16. 16. Далидчик Ф.И., Лопатина О.А., Ковалевский С.А. и др. // Хим. физика. 2024. Т. 43. № 2. С. 92.
  17. 17. Hu Y.-J., Li W., Liu Y. et al. // J. Pharm. Biomed. Anal. 2005. V. 39. № 3–4. P. 740.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library