RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Saccharina japonica seaweed-derived biochar production at various pyrolysis temperatures

PII
S0207401X25040013-1
DOI
10.31857/S0207401X25040013
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 4
Pages
3-10
Abstract
Biochars from the seaweed Saccharina japonica were obtained by stepwise pyrolysis at temperatures of 300, 400, 500, 700, 900 °C. Its characteristics and properties were studied: elemental composition, specific surface area and total pore volume, particle size distribution, as well as characteristic functional groups were determined using IR-Fourier spectroscopy. With an increase in the pyrolysis temperature from 300 °C to 900 °C, the biochar yield decreases from 50.4% to 22.7%. The biochar obtained at 500 °C has the largest specific surface area – 38.6 m2/g. As the pyrolysis temperature increases, the elemental composition of the biochar changes: the content of carbon, hydrogen, nitrogen decreases, and the content of sulfur and oxygen increases.
Keywords
пиролиз биоуголь морские водоросли Saccharina japonica
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Liu J., Zhou F., Abed A.M. et al. // Fuel. 2023. V. 336. 126826. https://doi.org/10.1016/j.fuel.2022.126826
  2. 2. Narayanan M. // Renew. Sust. Energ. Rev. 2024. V. 190. 114081. https://doi.org/10.1016/j.rser.2023.114081
  3. 3. Babich O., Sukhikh S., Larina V. et al. // Plants. 2022. V. 11. № 6. P. 780. https://doi.org/10.3390/plants11060780
  4. 4. Zhuang D., He N., Khoo K. S. et al. // Chemosphere. 2022. V. 291. 132932. https://doi.org/10.1016/j.chemosphere.2021.132932
  5. 5. Sultana F., Wahab M.A., Nahiduzzaman M. et al. // Aquaculture and Fisheries. 2023. V. 8. № 5. P. 463. https://doi.org/10.1016/j.aaf.2022.09.001
  6. 6. Hariz H.B., Lawton R.J., Craggs R.J. // Ecol. Eng. 2023. V. 189. 106910. https://doi.org/10.1016/j.ecoleng.2023.106910
  7. 7. Naď M., Brummer V., Lošák P. et al. // J. Clean. Prod. 2023. V. 385. 135721. https://doi.org/10.1016/j.jclepro.2022.135721
  8. 8. Sathinathan P., Parab H. M., Yusoff R. et al. // Renew. Sustain. Energy Rev. 2023. V. 173. 113096. https://doi.org/10.1016/j.rser.2022.113096
  9. 9. Yin Y., Wang J. // Renew. Energy. 2019. V. 141. P. 1. https://doi.org/10.1016/j.renene.2019.03.139
  10. 10. Pishchalnik V., Myslenkov S., Latkovskaya E., Arkhipkin V. // Sustainability. 2024. V. 16. № 7. 3031. https://doi.org/10.3390/su16073031
  11. 11. Choi J.H., Kim S.S., Suh D.J. et al. // Korean J. Chem. Eng. 2016. V. 33. P. 2691. https://doi.org/10.1007/s11814-016-0131-5
  12. 12. Tsvetkov M.V., Zaichenko A.Yu., Podlesniy D.N., Repina M.A., Glukhov A. A. // E3S Web Conf. 2024. V. 474. 01012. https://doi.org/10.1051/e3sconf/202447401012
  13. 13. Rony Z.I., Rasul M.G., Jahirul M.I., Mofijur M. // Fuel. 2024. V. 358. 130099. https://doi.org/10.1016/j.fuel.2023.130099
  14. 14. Amrullah A., Farobie O. // Heliyon. 2023. V. 9. № 7. e18350. https://doi.org/10.1016/j.heliyon.2023.e18350
  15. 15. Wang X., Zhang Y., Xia C. et al. Fuel. 2023. V. 338. 127378. https://doi.org/10.1016/j.fuel.2022.127378
  16. 16. Кислов В.М., Цветков М.В., Зайченко А.Ю. и др. // Хим. физика. 2023. Т. 42. № 4. С. 947. https://doi.org/10.1134/S1990793123040255
  17. 17. Vlaskin M.S., Chernova N.I., Kiseleva S.V., Popel’ O.S., Zhuk A.Z. // Therm. Eng. 2017. V. 64. P. 627. https://doi.org/10.1134/S0040601517090105
  18. 18. Ripoll N., Silvestre C., Paredes E., Toledo M. // Int. J. Hydrog. Energy. 2017. V. 42. № 8. P 5513. https://doi.org/10.1016/j.ijhydene.2016.03.082
  19. 19. Кислов В.М., Цветкова Ю.Ю., Пилипенко Е.Н., Репина М.А., Салганская М.В. // Хим. физика. 2023. Т. 42. № 3. С. 16. https://doi.org/10.31857/S0207401X2303007X
  20. 20. Yang Z., Wu Y., Zhang Z., et al. // Renew. Sustain. Energy Rev. 2019. V. 103. P. 384. https://doi.org/10.1016/j.rser.2018.12.047
  21. 21. Tsvetkov M.V., Zaichenko A.Yu., Podlesniy D.N. // E3S Web Conf. 2023. V. 419. 01010. https://doi.org/10.1051/e3sconf/202341901010
  22. 22. Салганский Е.А., Салганская М.В., Седов И.В. // Хим. физика. 2024. Т. 43. № 8. С. 70.
  23. 23. Danesh P., Niaparast P., Ghorbannezhad P., Ali I. // Fuel. 2023. V. 337. 126889. https://doi.org/10.1016/j.fuel.2022.126889
  24. 24. Campion L., Bekchanova M., Malina R., Kuppens T. // J. Clean. Prod. 2023. V. 408. 137138. https://doi.org/10.1016/j.jclepro.2023.137138
  25. 25. Leong Y.K., Chang J.S. // Bioresour. Technol. 2023. V. 389. 129782. https://doi.org/10.1016/j.biortech.2023.129782
  26. 26. Nguyen T.B., Nguyen V.T., Hoang H.G. et al. // Curr. Pollution Rep. 2023. V. 9. P. 73. https://doi.org/10.1007/s40726-022-00243-6
  27. 27. Tsvetkov M., Zaichenko A., Podlesniy D. et al. // E3S Web Conf. 2024. V. 498. ID 02002. https://doi.org/10.1051/e3sconf/202449802002
  28. 28. Морозов А.Н., Табалин С. Е., Анфимов Д.Р. и др. Хим. физика. 2024. Т. 43. № 6. С. 41. https://doi.org/10.31857/S0207401X24060052
  29. 29. Sharma R.K., Singh T.P., Haydary J., Azad D., Verma A. // Biochar Production for Green Economy. Academic Press. 2024. P. 81. https://doi.org/10.1016/B978-0-443-15506-2.00015-8
  30. 30. Цветкова Ю.Ю., Кислов В.М., Пилипенко Е.Н., Салганская М.В., Цветков М.В. // Хим. физика. 2024. Т. 43. № 7. С. 91. https://doi.org/10.31857/S0207401X24070097
  31. 31. Biswal B.K., Balasubramanian R. // J. Environ. Chem. Eng. 2023. V. 11. № 5. 110986. https://doi.org/10.1016/j.jece.2023.110986
  32. 32. Lin S.L., Zhang H., Chen W.H., Song M., Kwon E.E. // Bioresour. technol. 2023. V. 387. 129588. https://doi.org/10.1016/j.biortech.2023.129588
  33. 33. Manikandan S., Vickram S., Subbaiya R. et al. // Bioresour. Technol. 2023. V. 388. 129725. https://doi.org/10.1016/j.biortech.2023.129725
  34. 34. Belmesov A.A., Glukhov A.A., Kayumov R.R. et al. // Coatings. 2023. V. 13. № 12. 2075. https://doi.org/10.3390/coatings13122075
  35. 35. Satpati G.G., Devi A., Kundu D. et al. // Environ. Res. 2024. V. 258. 119408. https://doi.org/10.1016/j.envres.2024.119408
  36. 36. Anastasakis K., Ross A.B., Jones J.M. // Fuel. 2011. V. 90. №2. P. 598. https://doi.org/10.1016/j.fuel.2010.09.023
  37. 37. Imran M., Badshah S.L., Alves J.L.F. et al. // Biomass Conv. Bioref. 2023. P. 1. https://doi.org/10.1007/s13399-023-04741-5
  38. 38. Poo K.M., Son E.B., Chang J.S. et al. // J. Environ. Manage. 2018. V. 206, P. 364. https://doi.org/10.1016/j.jenvman.2017.10.056
  39. 39. Son E.B., Poo K.M., Chang J.S., Chae K.J. // Sci. Total Environ. 2018. V. 615. P. 161. https://doi.org/10.1016/j.scitotenv.2017.09.171
  40. 40. Srividya K., Mohanty K. // Chem. Eng. J. 2009. V. 155. № 3. P. 666. https://doi.org/10.1016/j.cej.2009.08.024
  41. 41. Oladipo A.A., Gazi M. // J. Water Process Eng. 2014. V. 2. P. 43. https://doi.org/10.1016/j.jwpe.2014.04.007
  42. 42. Pahlavan F., Kaur H., Ackerman-Biegasiewicz L.K., Lamanna A., Fini E.H. Resour., Conserv. Recycl. 2024. V. 210. 107810. https://doi.org/10.1016/j.resconrec.2024.107810
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library