RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Catalytical ignition of deuterium – carbon monoxide – air mixtures over metallic rhodium surface at pressures of 1–2 atm

PII
S0207401X25040109-1
DOI
10.31857/S0207401X25040109
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 4
Pages
88-96
Abstract
It is established that the temperature dependences of the lower limit of catalytic ignition of stoichiometric mixtures D2 + CO + air and H2 + CO + air over the surface of metallic rhodium at pressures above 1 atm are close to each other. The fact that the temperature dependences of the upper limit of the catalytic ignition of deuterium and hydrogen in a mixture with CO differ markedly, and these of the lower limit are very close, may be due to the different adsorption capacity of carbon monoxide poisoning the untreated surface of the noble metal hydride/deuteride on the upper limit. At the same time, at the lower limit of catalytic ignition, the surface layer of adsorbed carbon monoxide is restored with each subsequent admission of the combustible mixture, containing CO. It is shown that the primary source of ignition of a mixture of D2 + CO + air occurs on the rhodium surface; in subsequent experiments, at a pressure above 1 atm, under the same conditions, the place of origin of the initial source changes. It has been found that the periods of delay of catalytic ignition only increase with decreasing temperature, which is associated with the adsorption of carbon monoxide poisoning the catalyst on the surface of the noble metal hydride/deuteride at the upper catalytic limit, while the state of the surface of the noble metal changes only due to the burning-out of CO layer at the first ignition. However, the surface layer of the adsorbed carbon monoxide is restored with each subsequent injection of the combustible mixture containing CO when approaching the lower catalytic limit. Analysis of the visible and infrared spectra of the catalytic ignition of D2-CO-air mixtures allowed us to establish that the heating in the D2 - CO–air flame is significantly higher than during the combustion of deuterium in air, and also to identify emission bands of heavy water in the combustion products.
Keywords
предел воспламенения дейтерий монооксид углерода родий гиперспектрометр видимый и ближний ИК-диапазоны скоростная съемка
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Rubtsov N.M., Troshin K.Ya., Alymov M.I. Catalytic ignition of hydrogen and hydrogen-hydrocarbon blends over noble metals. Springer Intern. Publ., 2023. ISSN 978-3-031-28415-1.
  2. 2. Zhaolei Zheng F., Zhu Z. // ACS Omega. 2022. 7. 26375.
  3. 3. Kousheshi N., Paykani M.Y. // Energies. 2020. V. 13. P. 212.
  4. 4. Walker N.R., Chuahy F.D.F., Reitz R.D. // Proc. ASME 2015. Internal Combustion Engine Division Fall Technical Conf. N.Y., USA, 2015.
  5. 5. Wissink M., Reitz R.D. // SAE Intern. J. Engines. 2015. V. 8. P. 878.
  6. 6. Appel C., Mantzaras J., Schaeren R., Bombach R., Inauen A. // Clean Air. 2004. V. 5. P. 21. https://doi.org/10.1615/InterJEnerCleanEnv.v5.N1.20
  7. 7. Wires R., Watermeier L.A., Strehlow R. A. // J. Phys. Chem. 1959. V. 63. P. 989.
  8. 8. Shilov A.E., Shul’pin G.B. Activation and catalytic reactions of saturated hydrocarbons in the presence of metal complexes. Springer Science & Business Media, 2001.
  9. 9. Rubtsov N.M., Chernysh V.I., Tsvetkov G.I., Troshin K.Ya. // Combust. and Flame. 2020, V. 218, P. 179.
  10. 10. Трошин К.Я., Рубцов Н.М., Цветков Г.И., Черныш В.И., Шамшин И.О. // Хим. физика. 2023. Т. 42. № 3. C. 79. https://doi.org/10.31857/S0207401X23030184
  11. 11. Родионов И.Д., Родионов А.И., Ведешин Л.А. и др. // Исслед. Земли из космоса. 2013. № 6. С. 81. https://doi.org/10.1134/S0001433814090175
  12. 12. Трошин К.Я., Рубцов Н. М., Цветков Г.И., Черныш В.И. // Хим. физика. 2022. Т. 41. № 1. С. 25. https://doi.org/10.31857/S0207401X22010162
  13. 13. Трошин К.Я., Рубцов Н.М., Цветков Г.И., Черныш В.И., Шамшин И.О. // Хим. физика. 2023. Т. 41. № 8. С. 74. https://doi.org/10.31857/S0207401X22080131
  14. 14. Трошин К.Я., Рубцов Н.М., Цветков Г.И., Черныш В.И., Шамшин И.О. // Хим. физика. 2023. Т. 42. № 8. С. 74. https://doi.org/10.31857/S0207401X23080125
  15. 15. Термодинамические вычисления. https://rdrr.io
  16. 16. Lewis B., Von Elbe G. // Combustion, Explosions and Flame in Gases. N. Y., London: Acad. Press, 1987.
  17. 17. Уманский С.Я., Адамсон С.О., Ветчинкин А.С. и др. // Хим. физика. 2023. T. 42. № 4. С. 31. https://doi.org/10.31857/S0207401X23040143
  18. 18. Крешков А.П. Основы аналитической химии. Т. 3. М.: Химия, 1970.
  19. 19. Wang M., An H., Cai W., Shao X. // Chemosensors. 2023. V. 11. № 1. P. 37. https://doi.org/10.3390/chemosensors11010037
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library