RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Preparation of submicron cobalt films using cobalt oxalate as a precursor

PII
S0207401X25050036-1
DOI
10.31857/S0207401X25050036
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 5
Pages
23-32
Abstract
The possibility of obtaining porous two-dimensional cobalt structures (films) with submicron thickness using cobalt oxalate as a precursor during heat treatment in a hydrogen flow has been established. It is shown that the formation of two-dimensional structures on liquid low-melting metals (In, Ga) allows avoiding the formation of cracks and increases the integrity of Co films. It is shown that the thickness of Co films on Si reaches 100 nm, but the linear size of such cobalt sheets does not exceed 20 microns. The use of low-melting indium as a substrate makes it possible to increase the average size of Co films compared to Co films on silicon without an intermediate indium layer. The material is a thin two-dimensional layered structure of porous cobalt formed by interlacing metal chains. The film thickness is ~ 500 nm, and the linear size reaches 200 microns. The possibility of obtaining a durable metal film of Co-10% Ga on a massive drop of gallium measuring 20x15 mm has been established.
Keywords
двумерные структуры пленки морфология кобальт индий галлий микроскопия энергодисперсионный анализ
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Kafizas A., Carmalt C. J., Parkin I. P. // Coord. Chem. Rev. 2013. V. 257. P. 2073. https://doi.org/10.1016/j.ccr.2012.12.004
  2. 2. Chang L., Montoye R.K., Nakamura Y. et al. // IEEE J. Solid State Circuits. 2008. V. 43. P. 956. https://doi.org/10..1109/JSSC.2007.917509
  3. 3. Ivanova A.R., Nuesca G., Chen X. et al. // J. Electrochem. Soc. 1999. V. 146. P. 2139. https://doi.org/10.1149/1.1391904
  4. 4. Kaloyeros A. E., Londergan A., Arkles B. Method of interlayer mediated epitaxy of cobalt silicide from low temperature chemical vapor deposition of cobalt. US Pat. 6,346,477. 2002.
  5. 5. Zaera F. // Coord. Chem. Rev. 2013. V. 257. P. 3177. https://doi.org/10.1016/j.ccr.2013. 04.006
  6. 6. Elliott S. D., Dey G., Maimaiti Y. // J. Chem. Phys. 2017. V. 146. P. 052822. https://doi.org/10.1063/1.4975085
  7. 7. Смирнов Ю.М. // Хим. физика. 2020. Т. 39. № 4. С. 3. https://doi.org/10.1134/S0207401X18090121
  8. 8. Васильев А.А., Дзидзигури Э.Л., Ефимов М.Н. и др. // Хим. физика. 2021. Т. 40. № 6. С. 18. https://doi.org/10.31857/S0207401X21060157
  9. 9. Викулова М. А., Цыганов А. Р., Артюхов Д. И. и др. // Хим. физика. 2023. Т.42. №11. С. 3. https://doi.org/10.31857/S0207401X23110092
  10. 10. Чижик С.А., Грибов П.А., Ковальский Л.Ю. и др. // Хим. физика. 2024. Т. 43. № 2. С. 17. https://doi.org/10.1039/D4CP00581C
  11. 11. Lammers D. // Semicond. Manuf. Des. Community. 2017. semimd.com/ blog/2017/12/21.
  12. 12. Singer P. // Semicond. Des. Manuf. Community. 2018. http://semimd.com/blog/ tag/cobalt/
  13. 13. Londergan A.R. Nuesca G., Goldberg C. et al. // J. Electrochem. Soc. 2001. V. 148. P. 21.
  14. 14. Dorovskikh S. I., Hairullin R. R., Sysoev S. V. et al. // Surf. Eng. 2016. V. 32. P. 8. https://doi.org/10.1179/1743294414Y.0000000424
  15. 15. Samal N., Chetry K. B., Rook K., Hayes A. et al. // J. Vac. Sci. Technol. B. Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2014. V. 32. P. 011206. https://doi.org/10.1116/1.4836455
  16. 16. Georgi C., Hapke M., Thiel I., Hildebrandt A. et al. // Thin Solid Films. 2015. V. 578. P. 180. https://doi.org/10.1016/j.tsf.2015.01.052
  17. 17. Ramos B. K., Saly M. J., Chabal Y. J. et al. // Coord. Chem. Rev. 2013. V. 257. P. 3271. https://doi.org/10.1557/jmr.2018.379
  18. 18. Yang Y., Fei H., Ruan G., Tour D.M. // Adv. Mater. 2015. V. 27. № 20. P. 3175. https://doi.org/10.1557/jmr.2018.379
  19. 19. Алымов М.И., Рубцов Н.М., Зеленский В.А. и др. Способ получения ультратонких листов пористых металлов и сплавов: Пат. 2819948 // Б.И. 2024. № 16. C. 45.
  20. 20. Корякин А.А., Кукушкин С.А., Осипов А.В., Шарофидинов Ш.Ш. // ФTT. 2022. Т. 64. № 1. С. 117.
  21. 21. Кукушкин С.А., Осипов А.В., Бессолов В.Н., Коненкова Е.В. и др. // ФТТ. 2017. Т. 59. C. 660. https://doi.org/10.21883/ftt.2017.04.44266.287
  22. 22. Sakalo T.V., Kukushkin S.A. // Appl. Surf. Sci. 1996. V. 92. P. 350. https://doi.org/10.1016/0169-4332 (95)00254-5.
  23. 23. Zheng S., Zeng M., Cao H., Zhang T. et al. // Sci. China Mater.P. 1087. https://doi.org/10
  24. 24. Rubtsov N.M. Key Factors of Combustion. From Kinetics to Gas Dynamics. Springer International Publishing AG, 2017. ISBN 978-3-319-45996-7
  25. 25. Alymov M.I., Rubtsov N.M., Seplyarskii B.S., Zelensky V.A. et al. // Mendeleev Commun. 2016. V. 26. P. 452.
  26. 26. Диаграммы состояния двойных металлических систем / Под ред. Лякишева Н.П. Т. 2. М.: Машиностроение, 1997.
  27. 27. Алымов М.И., Рубцов Н.М., Зеленский В.А. и др. Способ получения пористого металла, сплава или псевдосплава: Пат. 2815844 // Б.И. 2024. № 9. C. 30.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library