- PII
- S3034612625020061-1
- DOI
- 10.7868/S3034612625020061
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 44 / Issue number 2
- Pages
- 63-72
- Abstract
- The paper presents the results of numerical simulation of the hydrogen production process during the combustion of aluminum nanopowder in water vapor. The calculations assumed that the configuration of the oxide coating on aluminum nanoparticles at the melting point of the oxide and above is thermodynamically equilibrium (oxide “cap”). Numerical experiments have revealed the influence of aluminum particle sizes, stoichiometry of reagents, as well as the mass fraction of the oxide coating on the depth of water vapor conversion to hydrogen. It was found that, despite pronounced exothermicity and concomitant high temperatures (T ≈ 3000 K and above), the process under consideration provides a significant depth of conversion of water vapor into hydrogen. At the same time, the initial oxide coating has a rather weak effect on the hydrogen output, and the rate of the combustion process, although it decreases with an increase in the mass fraction of the oxide in the system at the initial time, is also not too pronounced.
- Keywords
- горение наночастицы алюминия водяной пар водород
- Date of publication
- 17.02.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 115
References
- 1. Dincer I. // Intern. J. Hydrogen Energy 2002. V. 27. № 3. P. 265. https://doi.org/10.1016/S0360-3199 (01)00119-7
- 2. Паланкоева А.С., Беляев А.А., Арутюнов В.С. // Хим. физика. 2022. Т. 41. № 6. С. 7. https://doi.org/10.31857/S0207401X22060097
- 3. Дорофеенко С.О., Полианчик Е.В. // Хим. физика. 2022. Т. 41. № 3. С. 29. https://doi.org/10.31857/S0207401X22030049
- 4. Кислов В.М., Цветков М.В., Зайченко А.Ю. и др. // Хим. физика. 2023. Т. 42. № 8. С. 39. https://doi.org/10.31857/S0207401X2308006X
- 5. Егоров А.Г., Тизилов А.С. // Хим. физика. 2023. Т. 42. № 4. С. 47. https://doi.org/10.31857/S0207401X23040076
- 6. Цветков М.В., Кислов В.М., Цветкова Ю.Ю. и др. // Хим. физика. 2022. Т.41. № 8. C. 93. https://doi.org/10.31857/S0207401X22080143
- 7. Шейндлин А.Е., Битюрин В.А., Жук А.З. и др. // Докл. АН. Энергетика. 2009. Т. 425. № 4. С. 484.
- 8. Franzoni F., Milani M., Montorsi L. et al. // Intern. J. Hydrogen Energy. 2010. V. 35. № 4. P.1548. https://doi.org/10.1016/j.ijhydene.2009.11.107
- 9. Huang Y., Risha G., Yang V. et al. // Proc. 43-rd AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper 2005-738. https://doi.org/10.2514/6.2005-738
- 10. Starik A.M., Kuleshov P.S., Sharipov A.S. et al. // Combust. and Flame. 2014. V. 161. № 6. P. 1659. https://doi.org/10.1016/j.combustflame.2013.12.00710
- 11. Старик А.М., Савельев А.М., Титова Н.С. // Физика горения и взрыва. 2015. № 2. С. 64. https://rucont.ru/efd/356326
- 12. Storozhev V.B., Yermakov A.N. // Combust. and Flame. 2015. V. 162. № 11. P. 4129. https://doi.org/10.1016/j.combustflame.2015.08.013
- 13. Sundaram D., Yang V., Yetter R. // Prog. Energy Combust. Sci. 2017. V. 61. P.293. https://doi.org/10.1016/j.pecs.2017.02.002
- 14. Valiullin T.R., Egorov R.I., Strizhak P.A. // Energy Fuels. 2017. V.31. P.1044-1046. http://dx.doi.org/10.1021/acs.energyfuels.6b02540
- 15. Price E.W., Sigman R.K. // Progress in Astronautics and Aeronautics, V. 185: Solid Propellant Chemistry Combustion and Motor Interior Ballistics Eds. Yang V., Brill T.B., Ren W.Z., eds., N. Y. AIAA, 2000. P. 663. https://arc.aiaa.org/doi:10.2514/4.866562
- 16. Babuk V.A., Vassiliev V.A., Sviridov V.V. // Ibid. P. 749. https://arc.aiaa.org/doi:10.2514/4.866562
- 17. Melcher J.C., Krier H., Burton R.L. // J. Propul. Power. 2002. V. 18. № 3. P. 631. https://doi.org/10.2514/2.5977
- 18. Крайнов А.Ю., Порязов В А., Моисеева К.М. и др. // Инж.-физ. журн. 2021. Т. 94, №1, С. 84.
- 19. Huang Y., Risha G., Yang V. et al. // Combust. and Flame 2009. V. 156. № 1. P. 5. https://doi.org/10.1016/j.combustflame.2008.07.018
- 20. Storozhev V.B., Yermakov A.N. // Combust. and Flame. 2018. V. 190. P. 103. https://doi.org/10.1016/j.combustflame.2017.11.014
- 21. Storozhev V.B., Yermakov A.N. // Combust. and Flame. 2021. V. 226. P. 182. https://doi.org/10.1016/j.combustflame.2020.11.040
- 22. Ген М.Я., Фролов Ю.В., Сторожев В.Б. // Физика горения и взрыва. 1978. Т. 14, № 5. С. 153.
- 23. Glorian J., Gallier S., Catoire L. // Combust. Flame. 2016. V. 168. P. 378. https://doi.org/10.1016/j.combustflame.2016.01.022
- 24. Lynch P., Fiore G., Krier H. // Combust. Sci. Technol. 2010. V. 182. № 7. P. 842. https://doi.org/10.1080/00102200903341561
- 25. Storozhev V.B. // Surf. Sci. 1998. V.397. P. 170. https://doi.org/10.1016/S0039-6028 (97)00729-2
- 26. Storozhev V.B. // Aerosol Sci. Technol. 2001. V. 34. P.179. https://doi.org/10.1080/027868201300034781
- 27. Dreizin E.L. // Combust. and Flame. 1996. V. 105. P. 541. https://doi.org/10.1016/0010-2180 (95)00224-3
- 28. Beckstead M.W. // Combust. Explos. Shock Waves. 2005. V.41. P. 533. https://doi.org/10.1007/s10573-005-0067-2
- 29. Bergthorson J.M., Julien Ph., Goroshin S., et al. // Combust. Flame. 2016. V. 171. P. 262. https://doi.org/10.1016/j.combustflame.2016.06.002
- 30. Bazyn T., Krier H., Glumac N. // Ibid. 2006. V.145. № 4. P.703. https://doi.org/10.1016/j.combustflame.2005.12.017