RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

On gas-dynamic similarity of high-pressure hydrogen release into air

PII
S3034612625040071-1
DOI
10.7868/S3034612625040071
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 4
Pages
63-68
Abstract
The paper discusses the issues of gas-dynamic similarity in the problem of high-pressure hydrogen release into air and the possibility of laboratory modeling of the process by reducing the initial pressure at a fixed ratio of hydrogen and air pressures. The fundamental factor in the considered problem is the probability of hydrogen spontaneous ignition, which significantly limits the applicability of gas-dynamic similarity in modeling the considered process. It is shown, however, that for large values of the hydrogen and air pressure ratio (from 200 to 700 and higher) in view of the small values of the hydrogen ignition delay time, one can speak about the gas-dynamic similarity in a wide range of initial pressures. This should allow laboratory modeling the process of high-pressure hydrogen release with subsequent spontaneous ignition in atmospheric air at reduced pressure.
Keywords
водород импульсное течение самовоспламенение газодинамическое подобие взрывобезопасность хранение газов
Date of publication
15.04.2025
Year of publication
2025
Number of purchasers
0
Views
86

References

  1. 1. Yu L., Yang X., Zhang Z. et.al. // J. Energy Storage. 2023. V. 65. Article 107342.
  2. 2. Morandé A., Patricio L., Elodie B. et al. // Ibid. 2023. V. 64. Article 107193.
  3. 3. Zheng J., Liu X., Xu P. et al. // Intern. J. Hydrogen Energy. 2012. V. 37. № 1. P. 1048.
  4. 4. Wolanski P., Wojcicki S. 14th Sympos. (Intern.) on Combustion. Pittsburgh: The Combust. Inst., 1973. № 1. P. 1217.
  5. 5. Golub V.V., Baklanov D.I., Bazhenova T.V. et al. // J. Loss Prev. Process Ind. 2007. V. 20. № 4–6. P. 439.
  6. 6. Mironov V.N., Penyazkov O.G., Ignatenko D.G. // Intern. J. Hydrogen Energy. 2015. V. 40. № 16. P. 5749.
  7. 7. Kim Y.R., Lee H.J., Kim S. et al. // Proc. Combust. Inst. 2013. V. 34. P. 2057.
  8. 8. Li Y., Jiang Y., Pan X. et al. // Fuel. 2021. V. 303. Article 121294.
  9. 9. Smygalina A.E., Kiverin A.D. // Russ. J. Phys. Chem. B. 2023. V. 17. № 4. P. 907.
  10. 10. Golovastov S., Bocharnikov V. // Intern. J. Hydrogen Energy. 2012. V. 37. № 14. P. 10956.
  11. 11. Smygalina A.E., Kiverin A.D. // J. Energy Storage. 2023. V. 73. Part A. Article 108911.
  12. 12. Смыгалина А.Е., Киверин А.Д. // Хим. физика. 2021. Т. 40. № 8. С. 49.
  13. 13. Kuang C., Nie S., Lin Y. et al. // Fire. 2024. V. 7. № 7. P. 216.
  14. 14. O’Conaire M., Curran H.J., Simmie J.M. et al. // Intern. J. Chem. Kinet. 2004. V. 36. № 11. P. 603.
  15. 15. Krivosheyev P., Kisel Yu., Skilandz А. et al. // Intern. J. Hydrogen Energy. 2024. V. 66. P. 81.
  16. 16. Тереза А.М., Агафонов Г.Л., Андержанов Э.К. и др. // Хим. физика. 2023. Т. 42. № 3. C. 70.
  17. 17. Тереза А.М., Агафонов Г.Л., Андержанов Э.К. и др. // Горение и взрыв. 2021. Т. 14. № 4. С. 4.
  18. 18. Kiverin A., Yarkov A., Yakovenko I. // Computation. 2024. V. 12. № 5. P. 103.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library