RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

The application of numerical inversion of the laplace transform to calculate the density of molecular states

PII
S3034612625050014-1
DOI
10.7868/S3034612625050014
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 5
Pages
3-14
Abstract
To estimate the rate constants of monomolecular reactions using quasi-equilibrium statistical theory, information on the density of discrete states of molecules is required. In the present work, a new approach to calculating the density of discrete states of stable molecules and transition complexes is proposed, which is based on the numerical inversion of the Laplace transform. To test the method, the calculations of model systems including H₂O, NH₃, CD4 and с-C₃H₆ molecules were carried out. It is shown that at energies less than 200 kcal/mol, the relative error in calculating the density of discrete states does not exceed 0.5%. The results obtained by this method can be used, for instance, to estimate the rate constants of reactions involving organic radicals formed in the troposphere and tropopause.
Keywords
мономолекулярные реакции статистическая теория скоростей реакций плотность состояний преобразование Лапласа
Date of publication
15.05.2025
Year of publication
2025
Number of purchasers
0
Views
94

References

  1. 1. Морозов И.И., Васильев Е.С., Волков Н.Д. и др. // Хим. физика. 2022. Т. 41. № 10. С. 16. https://doi.org/10.31857/S0207401X22100089
  2. 2. Adamson S.O., Kharlampidi D.D., Shtyrkova A.S. et al. // Atoms. 2023. V. 11. № 10. 132. https://doi.org/10.3390/atoms11100132
  3. 3. Адамсон С.О., Харлампиди Д.Д., Штыркова А.С. и др. // Хим. физика. 2024. Т. 45. № 6. С. 3. https://doi.org/10.31857/S0207401X24060018
  4. 4. Васильев Е.С., Волков Н.Д., Карпов Г.В. и др. // Журн. физ. химии. 2020. Т. 94. № 10. С. 1484. https://doi.org/10.31857/S0044453720100295
  5. 5. Васильев Е.С., Волков Н.Д., Карпов Г.В. и др. // Хим. физика. 2021. Т. 40. № 10. С. 30. https://doi.org/10.31857/S0207401X21100125
  6. 6. Васильев Е.С., Карпов Г.В., Шартава Д.К. и др. // Хим. физика. 2022. Т. 41. № 5. С. 10. https://doi.org/10.31857/S0207401X22050119
  7. 7. Морозов И.И., Васильев Е.С., Бутковская Н.И. и др. // Хим. физика. 2023. Т. 42. № 10. C. 26. https://doi.org/10.31857/S0207401X23100114
  8. 8. Dyakov Y.A., Adamson S.O., Butkovskaya N.I. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 682. https://doi.org/10.1134/S1990793124700179
  9. 9. Asplund G., Grimvall A., Jonsson S. // Chemosphere. 1994. V. 28. № 8. P. 1467. https://doi.org/10.1016/0045-6535 (94)90241-0
  10. 10. Hoekstra E.J. // Chemosphere. 2003. V. 52. № 2. P. 355. https://doi.org/10.1016/S0045-6535 (03)00213-3
  11. 11. Smith D.J., Setser D.W., Kim K.C. et al. // J. Phys. Chem. 1977. V. 81. № 9. P. 898. https://doi.org/10.1021/j100524a019
  12. 12. Ebrecht J., Hack W., Wagner H.G. // Ber. Bunsenges. Phys. Chem. 1989. V. 93. № 5. P. 619. https://doi.org/10.1002/bbpc.19890930520
  13. 13. Markert F., Pagsberg P. // Chem. Phys. Lett. 1993. V. 209. № 5–6. P. 445. https://doi.org/10.1016/0009-2614 (93)80115-6
  14. 14. Marcus R.A., Rice O.K. // J. Phys. Colloid Chem. 1951. V. 55. № 6. P. 894. https://doi.org/10.1021/j150489a013
  15. 15. Marcus R.A. // J. Chem. Phys. 1952. V. 20. № 3. P. 359. https://doi.org/10.1063/1.1700424
  16. 16. Baer T., Mayer P.M. // J. Am. Soc. Mass Spectrom. 1997. V. 8. № 2. P. 103. https://doi.org/10.1016/S1044-0305 (96)00212-7
  17. 17. Troe J. // J. Chem. Soc. Faraday Trans. 1997. V. 93. № 5. P. 885. https://doi.org/10.1039/A606453A
  18. 18. Wieder G.M., Marcus R.A. // J. Chem. Phys. 1962. V. 37. № 8. P. 1835. https://doi.org/10.1063/1.1733376
  19. 19. Marcus R.A. // J. Chem. Phys. 1965. V. 43. № 8. P. 2658. https://doi.org/10.1063/1.1697191
  20. 20. Rosenstock H.M., Wallenstein M.B, Wahrhaftig A.L. et al. // Proc. Natl. Acad. Sci. 1952. V. 38. № 8. P. 667. https://doi.org/10.1073/pnas.38.8.667
  21. 21. Rosenstock H.M. // J. Chem. Phys. 1961. V. 34. № 6. P. 2182. https://doi.org/10.1063/1.1731842
  22. 22. Mozurkewich M., Benson S.W. // J. Phys. Chem. 1984. V. 88. № 25. P. 6429. https://doi.org/10.1021/j150669a073
  23. 23. Mozurkewich M., Lamb J.J., Benson S.W. // J. Phys. Chem. 1984. V. 88. № 25. P. 6435. https://doi.org/10.1021/j150669a074
  24. 24. Lamb J.J., Mozurkewich M., Benson S.W. // J. Phys. Chem. 1984. V. 88. № 25. P. 6441. https://doi.org/10.1021/j150669a075
  25. 25. Nordholm S. // Chem. Phys. 1989. V. 129. № 3. P. 371. https://doi.org/10.1016/0301-0104 (89)85007-4
  26. 26. Harrington R.E., Rabinovitch B.S., Diesen R.W. // J. Chem. Phys. 1960. V. 32. № 4. P. 1245. https://doi.org/10.1063/1.1730882
  27. 27. Schneider F.W., Rabinovitch B.S. // J. Am. Chem. Soc. 1962. V. 84. № 22. P. 4215. https://doi.org/10.1021/ja00881a006
  28. 28. Current J.H., Rabinovitch B.S. // J. Chem. Phys. 1963. V. 38. № 4. P. 783. https://doi.org/10.1063/1.1733764
  29. 29. Haarhoff P.C. // Mol. Phys. 1963. V. 6. № 3. P. 337. https://doi.org/10.1080/00268976300100381
  30. 30. Astholz D.C., Troe J., Wieters W. // J. Chem. Phys. 1979. V. 70. № 11. P. 5107. https://doi.org/10.1063/1.437352
  31. 31. Stein S.E., Rabinovitch B.S. // J. Chem. Phys. 1973. V. 58. № 6. P. 2438. https://doi.org/10.1063/1.1679522
  32. 32. Beyer T., Swinehart D.F. // Commun. ACM. 1973. V. 16. № 6. P. 379. https://doi.org/10.1145/362248.362275
  33. 33. Rabinovitch B.S., Diesen R.W. // J. Chem. Phys. 1959. V. 30. № 3. P. 735. https://doi.org/10.1063/1.1730036
  34. 34. Rabinovitch B.S., Current J.H. // J. Chem. Phys. 1961. V. 35. № 6. P. 2250. https://doi.org/10.1063/1.1732253
  35. 35. Whitten G.Z., Rabinovitch B.S. // J. Chem. Phys. 1963. V. 38. № 10. P. 2466. https://doi.org/10.1063/1.1733526
  36. 36. Thiele E. // J. Chem. Phys. 1963. V. 39. № 12. P. 3258. https://doi.org/10.1063/1.1734187
  37. 37. Whitten G.Z., Rabinovitch B.S. // J. Chem. Phys. 1964. V. 41. № 6. P. 1883. https://doi.org/10.1063/1.1726175
  38. 38. Tardy D.C., Rabinovitch B.S., Whitten G.Z. // J. Chem. Phys. 1968. V. 48. № 3. P. 1427. https://doi.org/10.1063/1.1668840
  39. 39. Berblinger M., Schlier C. // J. Chem. Phys. 1992. V. 96. № 9. P. 6834. https://doi.org/10.1063/1.462572
  40. 40. Lin S.H., Eyring H. // J. Chem. Phys. 1965. V. 43. № 6. P. 2153. https://doi.org/10.1063/1.1697098
  41. 41. Tou J.C., Lin S.H. // J. Chem. Phys. 1968. V. 49. № 9. P. 4181. https://doi.org/10.1063/1.1670734
  42. 42. Hoare M.R., Ruijgrok T.W. // J. Chem. Phys. 1970. V. 52. № 1. P. 113. https://doi.org/10.1063/1.1672655
  43. 43. Hoare M.R. // J. Chem. Phys. 1970. V. 52. № 11. P. 5695. https://doi.org/10.1063/1.1672846
  44. 44. Forst W. // Chem. Rev. 1971. V. 71. № 4. P. 339. https://doi.org/10.1021/cr60272a001
  45. 45. Dubner H., Abate J. // J. ACM. 1968. V. 15. № 1. P. 115. https://doi.org/10.1145/321439.321446
  46. 46. Hoare M.R., Pal P. // Mol. Phys. 1971. V. 20. № 4. P. 695. https://doi.org/10.1080/00268977100100661
  47. 47. Bauer S.H. // J. Chem. Phys. 1939. V. 7. № 12. P. 1097. https://doi.org/10.1063/1.1750379
  48. 48. Magee J.L., Hamill W.H. // J. Chem. Phys. 1959. V. 31. № 5. P. 1380. https://doi.org/10.1063/1.1730603
  49. 49. Schlag E.W., Sandsmark R.A. // J. Chem. Phys. 1962. V. 37. № 1. P. 168. https://doi.org/10.1063/1.1732944
  50. 50. Haarhoff P.C. // Mol. Phys. 1964. V. 7. № 2. P. 101. https://doi.org/10.1080/00268976300100871
  51. 51. Forst W., Prášil Z., St. Laurent P. // J. Chem. Phys. 1967. V. 46. № 10. P. 3736. https://doi.org/10.1063/1.1840445
  52. 52. Forst W. // J. Chem. Phys. 1968. V. 48. № 8. P. 3665. https://doi.org/10.1063/1.1669667
  53. 53. Döntgen M. // AIP Adv. 2016. V. 6. № 9. 095318. https://doi.org/10.1063/1.496392154.
  54. 54. Lin S.H., Eyring H. // J. Chem. Phys. 1963. V. 39. № 6. P. 1577. https://doi.org/10.1063/1.1734483
  55. 55. Kislov V.V., Nguyen T.L., Mebel A.M. et al. // J. Chem. Phys. 2004. V. 120. № 15. P. 7008. https://doi.org/10.1063/1.1676275
  56. 56. Schlag E.W., Sandsmark R.A., Valance W.G. // J. Chem. Phys. 1964. V. 40. № 5. P. 1461. https://doi.org/10.1063/1.1725346
  57. 57. Forst W., Práŝil Z. // J. Chem. Phys. 1969. V. 51. № 7. P. 3006. https://doi.org/10.1063/1.1672449
  58. 58. Schmittroth L.A. // Commun. ACM. 1960. V. 3. № 3. P. 171. https://doi.org/10.1145/367149.367172
  59. 59. Tolman R.C. The Principles of Statistical Mechanics. New York: Oxford University Press, 1938.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library