ОХНМХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Оценка ионосферных возмущений, обусловленных метеорологическими процессами в тропосфере

Код статьи
S3034612625050114-1
DOI
10.7868/S3034612625050114
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 44 / Номер выпуска 5
Страницы
95-102
Аннотация
Внутренние гравитационные волны (ВГВ), распространяясь из нижней атмосферы, могут являться источником ионосферных возмущений, которые, возможно, оказывают влияние на ионосферное распространение радиоволн и работу радиотехнических систем. В статье рассматривается актуальная задача оценки отклика F2-слоя ионосферы на распространение ВГВ из области метеорологического шторма в тропосфере. Исследование осуществляется методом численного моделирования на основе решения уравнения диффузии ионосферной плазмы с учетом возмущения нейтрального ветра под действием ВГВ. Амплитуда возмущения задавалась исходя из численных расчетов глобальной самосогласованной модели термосферы, ионосферы и протоносферы с включением реалистичного источника ВГВ. Численные оценки показали, что возмущения нейтрального ветра в термосфере с периодом в несколько часов приводят к заметному уменьшению электронной плотности и увеличению высоты максимума F2-слоя в геомагнитно-спокойных условиях.
Ключевые слова
ионосфера внутренние гравитационные волны ветер в термосфере распространение радиоволн
Дата публикации
15.05.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
79

Библиография

  1. 1. Knížová P.K., Podolská K., Potužníková K. et al. // Ann. Geophysic. 2020. V. 38. № 1. P. 73. https://doi.org/10.5194/angeo-38-73-2020
  2. 2. Голубков Г.В., Адамсон С.О., Борчевкина О.П. и др. // Хим. физика. 2022. Т. 41. № 5. С. 53. https://doi.org/10.31857/S0207401X22050053
  3. 3. Chou M.Y., Lin C.C.Н., Yue J. et al. // Geophys. Res. Lett. 2017. V. 44. № 3. P. 1219. https://doi.org/10.1002/2016GL072205
  4. 4. Laštovichka J. // J. Atmos. Sol.-Terr. Phys. 2006. V. 68. № 3–5. P. 479. https://doi.org/10.1016/j.jastp.2005.01.018
  5. 5. Кшевецкий С.П., Курдяева Ю.А., Гаврилов Н.М. // Хим. физика. 2023. Т. 42. № 10. С. 77. https://doi.org/10.31857/S0207401X23100096
  6. 6. Borchevkina O.P., Karpov I.V., Karpov M.I. // Atmosphere. 2020. V. 11. № 9. P. 1017. https://doi.org/10.3390/atmos11091017
  7. 7. Borchevkina O.P., Kurdyeva Y.A., Dyakov Y.A. et al. // Atmosphere. 2021. V. 12. № 11. P. 1384. https://doi.org/10.3390/atmos12111384
  8. 8. Jonah O.F., Kherani E.A., De Paula E.R. // J. Geophys. Res. A: Space Phys. 2016. V. 121. № 3. P. 2531. https://doi.org/10.1002/2015JA022273
  9. 9. Knížová P.K., Potužníková K., Podolská K. et al. // Front. Astron. Space Sci. 2023. V. 10. P. 1197157. https://doi.org/10.3389/fspas.2023.1197157
  10. 10. Курдяева Ю.А., Кшевецкий С.П., Борчевкина О.П. и др. // Геомагнетизм и аэрономия. 2022. Т. 62. № 4. С. 537. https://doi.org/10.31857/S0016794022040113
  11. 11. Chernigovskaya M.A., Shpynev B.G., Ratovsky K.G. // J. Atmos. Sol.-Terr. Phys. 2015. V. 136. Part B. P. 235. https://doi.org/10.1016/j.jastp.2015.07.006
  12. 12. Zakharov V.I., Sigachev P.K. // Adv. Space Res. 2022. V. 69. № 1. P. 132. https://doi.org/10.1016/j.asr.2021.09.025
  13. 13. Бахметьева Н.В., Григорьев Г.И., Калинина Е.Е. // Хим. физика. 2023. T. 42. № 4. С. 73. https://doi.org/10.31857/S0207401X23040039
  14. 14. Hocke K., Schlegel K. // Ann. Geophys. 1996. V. 14. № 9. P. 917. https://doi.org/10.1007/s00585-996-0917-6
  15. 15. Бахметьева Н.В., Жемяков И.Н. // Хим. физика. 2022. Т. 41. № 10. С. 65. https://doi.org/10.31857/S0207401X2210003X
  16. 16. Miyoshi Y., Fujiwara H. // J. Geophys. Res. 2008. V. 113. № D1. Article D01101. https://doi.org/10.1029/2007JD008874
  17. 17. Kурдяева Ю.А., Бессараб Ф.С., Борчевкина О.П. и др. // Хим. физика. 2024. Т. 43. № 6. С. 91. https://doi.org/10.31857/S0207401X24060105
  18. 18. Ratovsky K., Klimenko M., Vasilyev R. et al. // Adv. Space Res. 2021. V. 67. № 1. P. 122. https://doi.org/10.1016/j.asr.2020.10.021
  19. 19. Vadas S.L., Crowley G. // J. Geophys. Res. Space Phys. 2017. V. 122. № 6. P. 6652. https://doi.org/10.1002/2016JA023828
  20. 20. Kurdyaeva Y.A., Bessarab F.S., Borchevkina O.P. et al. // Adv. Space Res. 2024. V. 74. № 5. P. 2463. https://doi.org/10.1016/j.asr.2024.05.062
  21. 21. Курдяева Ю.А., Борчевкина О.П., Голикова Е.В. и др. // Изв. РАН. Сер. физ. 2024. Т. 88. № 3. С. 481. https://doi.org/10.31857/S0367676524030191
  22. 22. Карпов И.В., Лебле С.Б., Смертин В.М. // Геомагнетизм и аэрономия. 1983. Т. 23. № 4. С. 672.
  23. 23. Карпов И.В., Лебле С.Б. // Изв. вузов. Радиофизика. 1983. Т. 26. № 12. С. 1599.
  24. 24. Гершман Б.Н. Динамика ионосферной плазмы. М.: Наука, 1974. 257 с.
  25. 25. Joyner K.Н., Butcher E.C. // J. Atmos. Terr. Phys. 1980. V. 42. № 5. P. 455. https://doi.org/10.1016/0021-9169 (80)90005-7
  26. 26. Справочник по специальным функциям / Под ред. Абрамовица М., Стиган И. Пер. с англ. М.: Наука, 1979.
  27. 27. Bilitza D., Altadill V., Truhlik V. et al. // Space Weather. 2017. V. 15. № 2. P. 418. https://doi.org/10.1002/2016SW001593
  28. 28. Namgaladze A., Korenkov Y., Klimenko V. et al. // J. Atmos. Terr. Phys. 1991. V. 53. № 11-12. P. 1113. https://doi.org/10.1016/0021-9169 (91)90060-K
  29. 29. Бахметьева Н.В., Григорьев Г.И., Калинина Е.Е. // Хим. физика. 2022. Т. 41. № 5. С. 441. https://doi.org/10.31857/S0207401X22050028
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека