- PII
- S3034612625100031-1
- DOI
- 10.7868/S3034612625100031
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 44 / Issue number 10
- Pages
- 24-33
- Abstract
- The analysis of the main methods for recording the radiation characteristics of high-temperature gases behind the front of a strong shock wave, including the 3D-spectroscopy method and the time-integrated spectroscopy method, is carried out. A more realistic approach to processing experimental data is proposed, which presents the obtained information in the form of spectrograms of the thermal flux power of shock-heated gas. Spectrograms of the thermal flux power of shock-heated air measured by the time-integrated spectroscopy method in the shock wave velocity range from 8 to 11 km/s at an initial pressure of 0.25 Torr are analyzed. Their comparison with the corresponding spectrograms obtained by the 3D-spectroscopy method showed that both methods give approximately the same results.
- Keywords
- ударные волны радиационные характеристики методы регистрации воздух ударная труба
- Date of publication
- 21.04.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 34
References
- 1. Uyanna O., Najafi H. // Acta Astronaut. 2020. V. 176. P. 341. https://doi.org/10.1016/j.actaastro.2020.06.047
- 2. Brandis A.M., Cruden B.A. // AIAA Paper. 2017. № 2017-1145. https://doi.org/10.2514/6.2017-1145
- 3. Герасимов Г.Я., Козлов П.В., Забелинский И.Е., Быкова Н.Г., Левашов В.Ю. // Хим. физика. 2022. Т. 41. № 8. С. 17. https://doi.org/10.31857/S0207401X22080027
- 4. Gerasimov G.Ya., Kozlov P.V., Zabelinsky I.E., Bykova N.G., Levashov V.Yu. // Rus. J. Phys. Chem. B. 2022. V. 16. P. 642. https://doi.org/10.1134/S1990793122040194
- 5. Быкова Н.Г., Забелинский И.Е., Козлов П.И., Герасимов Г.Я., Левашов В.Ю. // Хим. физика. 2023. Т. 42. № 10. С. 34. https://doi.org/10.31857/S0207401X23100047
- 6. Bykova N.G., Zabelinsky I.E., Kozlov P.V., Gerasimov GYa.,. Levashov V.Yu. // Rus. J. Phys. Chem. B. 2023. V. 17. P. 1152. https://doi.org/10.1134/S1990793123050184
- 7. Суржиков С.Т. // Хим. физика. 2010. Т. 29. № 7. С. 48. https://doi.org/10.1134/S1990793110040123
- 8. Surzhikov S.T. // Rus. J. Phys. Chem. B. 2010. V. 4. P. 613. https://doi.org/10.1134/S1990793110040123
- 9. Zhao Y., Huang H. // Acta Astronaut. 2020. V. 169. P. 84. https://doi.org/10.1016/j.actaastro.2020.01.002
- 10. Brandis A.M., Johnson C.O. // AIAA Paper. 2017. № 2014-2374. https://doi.org/10.2514/6.2014-2374
- 11. Cruden B., Martinez R., Grinstead J., Olejniczak J. // Ibid. 2017. № 2009-4240. https://doi.org/10.2514/6.2009-4240
- 12. Brandis A.M., Johnston C.O., Cruden B.A. et al. // J. Thermophys. Heat Trans. 2015. V. 29. P. 209. https://doi.org/10.2514/1.T4000
- 13. Dufrene A., Holden M. // AIAA Paper. 2011. № 2011626. https://doi.org/10.2514/6.2011-626
- 14. McGilvray M., Doherty L.J., Morgan R.G., Gildfind D.E. // Ibid. 2015. № 2015-3543. https://doi.org/10.2514/6.2015-3543
- 15. Kozlov P.V., Zabelinsky I.E., Bykova N.G. et al. // Acta Astronaut. 2022. V. 194. P. 461. https://doi.org/10.1016/j.actaastro.2021.10.032
- 16. Kozlov P.V., Bykova N.G., Gerasimov G.Ya. et al. // Acta Astronaut. 2024. V. 214. P. 303. https://doi.org/10.1016/j.actaastro.2023.10.033
- 17. Grosso Ferreira R., Carvalho B.B., Alves L.L. et al. // Sensors 2023. V. 23. P. 6027. https://doi.org/10.3390/s23136027
- 18. Bose D., McCorkle E., Bogdanoff D., Allen G.A. // AIAA Paper. 2009. № 2009-1030. https://doi.org/10.2514/6.2009-1030
- 19. Brandis A.M., Johnson C.O., Cruden B.A., Prabhu D.K. // Ibid. 2013. № 2013-1055. https://doi.org/10.2514/6.2013-1055
- 20. Залогин Г.Н., Козлов П.В., Кузнецова Л.А. и др. // ЖТФ. 2001. Т. 71. № 6. С. 10.
- 21. Zalogin G.N., Kozlov P.V., Kuznetsova L.A. et al. // Tech. Phys. 2001. V. 46. P. 654. https://doi.org/10.1134/1.1379629
- 22. Козлов П.В., Забелинский И.Е., Быкова Н.Г. и др. // Хим. физика. 2021. Т. 40. № 8. С. 26. https://doi.org/10.31857/S0207401X21080069
- 23. Kozlov P.V., Zabelinsky I.E., Bykova N.G. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 652. https://doi.org/10.1134/S1990793121040199
- 24. Суржиков С.Т. // Изв. РАН. МЖГ. 2019. № 1. С. 99. https://doi.org/10.1134/S0568528119010146
- 25. Surzhikov S.T. // Fluid Dyn. 2019. V. 54. P. 98. https://doi.org/10.1134/S0015462819010142
- 26. Козлов П.В., Забелинский И.Е., Быкова Н.Г. и др. // Изв. РАН. МЖГ. 2022. № 6. С. 85. https://doi.org/10.31857/S056852812260045X
- 27. Kozlov P.V., Zabelinsky I.E., Bykova N.G. et al. // Fluid Dyn. 2022. V. 57. P. 780. https://doi.org/ 10.1134/S0015462822601322
- 28. Козлов П.В., Забелинский И.Е., Быкова Н.Г. и др. // Изв. РАН. МЖГ. 2023. № 5. С. 138. https://doi.org/10.31857/S1024708423600148
- 29. Kozlov P.V., Zabelinsky I.E., Bykova N.G. et al. // Fluid Dyn. 2023. V. 58. P. 960. https://doi.org/ 10.1134/S0015462823601328
- 30. NIST Atomic Spectra Database, Version 5.12. Gaithersburg: NIST, 2024. https://doi.org/10.18434/T4W30F
- 31. https://data.nasa.gov/docs/datasets/aerothermodynamics/EAST/index.html
- 32. Grinstead J.H., Wilder M.C., Olejniczak J. et al. // AIAA Paper. 2008. № 2008-1244. https://doi.org/10.2514/6.2008-1244