RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

REGISTRATION METHODS OF RADIATION CHARACTERISTICS OF SHOCK-HEATED GASES

PII
S3034612625100031-1
DOI
10.7868/S3034612625100031
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 10
Pages
24-33
Abstract
The analysis of the main methods for recording the radiation characteristics of high-temperature gases behind the front of a strong shock wave, including the 3D-spectroscopy method and the time-integrated spectroscopy method, is carried out. A more realistic approach to processing experimental data is proposed, which presents the obtained information in the form of spectrograms of the thermal flux power of shock-heated gas. Spectrograms of the thermal flux power of shock-heated air measured by the time-integrated spectroscopy method in the shock wave velocity range from 8 to 11 km/s at an initial pressure of 0.25 Torr are analyzed. Their comparison with the corresponding spectrograms obtained by the 3D-spectroscopy method showed that both methods give approximately the same results.
Keywords
ударные волны радиационные характеристики методы регистрации воздух ударная труба
Date of publication
21.04.2025
Year of publication
2025
Number of purchasers
0
Views
34

References

  1. 1. Uyanna O., Najafi H. // Acta Astronaut. 2020. V. 176. P. 341. https://doi.org/10.1016/j.actaastro.2020.06.047
  2. 2. Brandis A.M., Cruden B.A. // AIAA Paper. 2017. № 2017-1145. https://doi.org/10.2514/6.2017-1145
  3. 3. Герасимов Г.Я., Козлов П.В., Забелинский И.Е., Быкова Н.Г., Левашов В.Ю. // Хим. физика. 2022. Т. 41. № 8. С. 17. https://doi.org/10.31857/S0207401X22080027
  4. 4. Gerasimov G.Ya., Kozlov P.V., Zabelinsky I.E., Bykova N.G., Levashov V.Yu. // Rus. J. Phys. Chem. B. 2022. V. 16. P. 642. https://doi.org/10.1134/S1990793122040194
  5. 5. Быкова Н.Г., Забелинский И.Е., Козлов П.И., Герасимов Г.Я., Левашов В.Ю. // Хим. физика. 2023. Т. 42. № 10. С. 34. https://doi.org/10.31857/S0207401X23100047
  6. 6. Bykova N.G., Zabelinsky I.E., Kozlov P.V., Gerasimov GYa.,. Levashov V.Yu. // Rus. J. Phys. Chem. B. 2023. V. 17. P. 1152. https://doi.org/10.1134/S1990793123050184
  7. 7. Суржиков С.Т. // Хим. физика. 2010. Т. 29. № 7. С. 48. https://doi.org/10.1134/S1990793110040123
  8. 8. Surzhikov S.T. // Rus. J. Phys. Chem. B. 2010. V. 4. P. 613. https://doi.org/10.1134/S1990793110040123
  9. 9. Zhao Y., Huang H. // Acta Astronaut. 2020. V. 169. P. 84. https://doi.org/10.1016/j.actaastro.2020.01.002
  10. 10. Brandis A.M., Johnson C.O. // AIAA Paper. 2017. № 2014-2374. https://doi.org/10.2514/6.2014-2374
  11. 11. Cruden B., Martinez R., Grinstead J., Olejniczak J. // Ibid. 2017. № 2009-4240. https://doi.org/10.2514/6.2009-4240
  12. 12. Brandis A.M., Johnston C.O., Cruden B.A. et al. // J. Thermophys. Heat Trans. 2015. V. 29. P. 209. https://doi.org/10.2514/1.T4000
  13. 13. Dufrene A., Holden M. // AIAA Paper. 2011. № 2011626. https://doi.org/10.2514/6.2011-626
  14. 14. McGilvray M., Doherty L.J., Morgan R.G., Gildfind D.E. // Ibid. 2015. № 2015-3543. https://doi.org/10.2514/6.2015-3543
  15. 15. Kozlov P.V., Zabelinsky I.E., Bykova N.G. et al. // Acta Astronaut. 2022. V. 194. P. 461. https://doi.org/10.1016/j.actaastro.2021.10.032
  16. 16. Kozlov P.V., Bykova N.G., Gerasimov G.Ya. et al. // Acta Astronaut. 2024. V. 214. P. 303. https://doi.org/10.1016/j.actaastro.2023.10.033
  17. 17. Grosso Ferreira R., Carvalho B.B., Alves L.L. et al. // Sensors 2023. V. 23. P. 6027. https://doi.org/10.3390/s23136027
  18. 18. Bose D., McCorkle E., Bogdanoff D., Allen G.A. // AIAA Paper. 2009. № 2009-1030. https://doi.org/10.2514/6.2009-1030
  19. 19. Brandis A.M., Johnson C.O., Cruden B.A., Prabhu D.K. // Ibid. 2013. № 2013-1055. https://doi.org/10.2514/6.2013-1055
  20. 20. Залогин Г.Н., Козлов П.В., Кузнецова Л.А. и др. // ЖТФ. 2001. Т. 71. № 6. С. 10.
  21. 21. Zalogin G.N., Kozlov P.V., Kuznetsova L.A. et al. // Tech. Phys. 2001. V. 46. P. 654. https://doi.org/10.1134/1.1379629
  22. 22. Козлов П.В., Забелинский И.Е., Быкова Н.Г. и др. // Хим. физика. 2021. Т. 40. № 8. С. 26. https://doi.org/10.31857/S0207401X21080069
  23. 23. Kozlov P.V., Zabelinsky I.E., Bykova N.G. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 652. https://doi.org/10.1134/S1990793121040199
  24. 24. Суржиков С.Т. // Изв. РАН. МЖГ. 2019. № 1. С. 99. https://doi.org/10.1134/S0568528119010146
  25. 25. Surzhikov S.T. // Fluid Dyn. 2019. V. 54. P. 98. https://doi.org/10.1134/S0015462819010142
  26. 26. Козлов П.В., Забелинский И.Е., Быкова Н.Г. и др. // Изв. РАН. МЖГ. 2022. № 6. С. 85. https://doi.org/10.31857/S056852812260045X
  27. 27. Kozlov P.V., Zabelinsky I.E., Bykova N.G. et al. // Fluid Dyn. 2022. V. 57. P. 780. https://doi.org/ 10.1134/S0015462822601322
  28. 28. Козлов П.В., Забелинский И.Е., Быкова Н.Г. и др. // Изв. РАН. МЖГ. 2023. № 5. С. 138. https://doi.org/10.31857/S1024708423600148
  29. 29. Kozlov P.V., Zabelinsky I.E., Bykova N.G. et al. // Fluid Dyn. 2023. V. 58. P. 960. https://doi.org/ 10.1134/S0015462823601328
  30. 30. NIST Atomic Spectra Database, Version 5.12. Gaithersburg: NIST, 2024. https://doi.org/10.18434/T4W30F
  31. 31. https://data.nasa.gov/docs/datasets/aerothermodynamics/EAST/index.html
  32. 32. Grinstead J.H., Wilder M.C., Olejniczak J. et al. // AIAA Paper. 2008. № 2008-1244. https://doi.org/10.2514/6.2008-1244
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library