- PII
- S3034612625110019-1
- DOI
- 10.7868/S3034612625110019
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 44 / Issue number 11
- Pages
- 3-8
- Abstract
- The paper examines composite polymer materials based on a PVDF matrix, which differ in filler material. Polyvinylidene fluoride (PVDF) is an organic polymer material with a significant piezoelectric effect. Currently, due to its physical and chemical properties, it is actively used for the development and creation of acousto-electronic devices, including sensors for various purposes, as well as in flexible electronics devices. Using Raman spectroscopy and dielectric spectroscopy methods, it is shown that the electrophysical properties of a composite material based on PVDF are determined by the formulation and manufacturing conditions. The additional polarization of the PVDF composite with various fillers in an external electric field directly during the creation of samples will significantly improve the electrophysical properties (coefficient of electromechanical coupling, dielectric constant). At the same time, the use of solid-state fillers significantly improves the mechanical and operational properties of such composites.
- Keywords
- поливинилиденфторид титанат бария цирконат-титанат свинца композитные пьезоактивные материалы рамановская спектроскопия ИК-фурье-спектроскопия электрофизические свойства
- Date of publication
- 20.05.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 37
References
- 1. Zhou L., Luo J., Li Q. et. al. // J. Funct. Mater. 2018. V. 49. № 12. P. 12079. https://doi.org/10.3969/j.issn.1001-9731.2018.12.011
- 2. Aghayari S. // Heliyon. 2022. V. 8. № 11. P. e11620. https://doi.org/10.1016/j.heliyon.2022.e11620
- 3. Fotouhi S., Akrami R., Ferreira-Green K. et al. // IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 659. P. 012085. https://10.1088/1757-899X/659/1/012085
- 4. Абдрашитов Э. Ф, Крицкая Д. А., Бокун В. Ч. и др. // Хим. физика. 2015. Т. 34. № 4. С. 87. https://doi.org/10.7868/S0207401X15040020
- 5. Abdrashitov E.F, Krickaya D.A., Bokun V.CH. et al. // Khim. Fizika. 2015. V. 34. № 4. P. 87. https://doi.org/10.7868/S0207401X15040020Anjana J., Prashanth K.J., Sharma A.K., Arpit J., Rashmi P.N. // Polym. Eng. Sci. 2015. V. 55. Ussue 7. P. 2589. https://doi.org/10.1002/pen.24088
- 6. Bužarovska A., Kubin M., Makreski P. et al. // J. Polym. Res. 2022. V. 29. P. 272. https://doi.org/10.1007/s10965-022-03133-z
- 7. Guo S., Duan X., Xie M. et al. // Micromachines. 2020. V. 11. P. 1076. https://doi.org/10.3390/mi11121076
- 8. Голованов Е.В., Кашин В.В., Горбачев И.А. и др. // РЭНСИТ: Радиоэлектроника. Наносистемы. Информационные технологии. 2024. Т. 16. № 7. С. 829. https://doi.org/10.17725/rensit.2024.16.829
- 9. Golovanov E.V., Kashin V.V., Gorbachev I.A. et al. // Radioelektronika. Nanosistemy. Informacionnye Tehnologii. 2024. V. 16. № 7. P. 829. https://doi.org/10.17725/j.rensit.2024.16.829Фионов A.С., Колесов В.В., Фионова В.А. и др. // Хим. физика. 2023. Т. 42. № 11. С. 79. https://doi.org/10.31857/S0207401X2311002X
- 10. Fionov A., Kolesov V., Fionova V. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P. 1384. https://doi.org/10.1134/S1990793123060027