RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

MICROWAVE PROPERTIES OF MAGNETICALLY STRUCTURED COMPOSITE MATERIALS BASED ON ELASTOMERIC MATRICES

PII
S3034612625110035-1
DOI
10.7868/S3034612625110035
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 11
Pages
16-25
Abstract
Composite materials based on elastomeric matrices (chloroprene rubber of sulfur regulation and cold-cured polydimethylsiloxane) and magnetic fillers were obtained: hard magnetic (SmCo, NdFeB) and soft magnetic (natural magnetic FeO, ZnNiCo ferrite) in the concentration range of 30–100 mass parts per 100 mass parts of the elastomeric matrix. The samples were molded both in the presence of a magnetic field up to 0.3 T and without it. As a result of studying the effect of structuring on the amplitude-frequency characteristics of the reflection coefficient (R) of samples in the frequency band 17.44–25.86 GHz, it was found that the amplitude and position of the of the attenuated R bands are determined by the composite formulation, and within the framework of one formulation, the anisotropy of the magnetization of the composite, which is determined by the nature of the distribution of the magnetic filler in the elastomeric matrix.
Keywords
магнитно-структурированные композиты функциональные материалы эластомеры искусственные электродинамические среды электромагнитная совместимость
Date of publication
20.05.2025
Year of publication
2025
Number of purchasers
0
Views
34

References

  1. 1. Tiwari M., Arya M.A., More P.V. et al. // J. Nanosci. Nanotechnol. 2020. V. 20. № 5. P. 2847. https://doi.org/10.1166/jnn.2020.17474
  2. 2. Жуков А.М., Солодилов В.И., Третьяков И.В. и др. // Хим. физика. 2022. Т. 41. № 9. С. 64. https://doi.org/10.31857/S0207401X22090138
  3. 3. Zhukov A.M., Solodilov V.I., Tretyakov I.V. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. № 9. P. 64. https://doi.org/10.1134/S199079312205013X
  4. 4. Кириллов В.Е., Юрков Г.Ю., Коробов М.С. и др. // Хим. физика. 2023. Т. 42. № 11. С. 39. https://doi.org/10.31857/S0207401X23110043
  5. 5. Kirillov V.E., Yurkov G.Yu., Korobov M.S. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P. 1346 https://doi.org/10.1134/S1990793123060040
  6. 6. Robertsam A, Jaya N.V. // J. Nanosci. Nanotechnol. 2020. V. 20. № 6. P. 3504. https://doi.org/10.1166/jnn.2020.17404
  7. 7. Deka B., Lee Y.-W., Yoo I.-R. et al. // Appl. Phys. Lett. 2019. V. 115. Article 192901. https://doi.org/10.1063/1.5128163
  8. 8. Сvek M., Moucka R., Sedlacik M. et al. // Smart Mater. Struct. 2017. V. 26. P. 095005. https://doi.org/10.1088/1361-665X/aa7ef6
  9. 9. Fionov A., Kraev I., Yurkov G. et al. // Polymers. 2022. V. 14. P. 3026. https://doi.org/10.3390/polym14153026.
  10. 10. Хачатуров А.А., Фионов А.С., Колесов В.В. и др. // РЭНСИТ: Радиоэлектроника. Наносистемы. Информ. технологии. 2022. Т. 14. № 4. С. 415. https://doi.org/10.17725/rensit.2022.14.415
  11. 11. Hachaturov A.A., Fionov A.S., Kolesov V.V. et al. // RENSIT: Radioelectronics. Nanosystems. Information Technologies. 2022. V. 14. № 4. P. 415. https://doi.org/10.17725/rensit.2022.14.415
  12. 12. Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. М.: Физматгиз, 1963.
  13. 13. Brandt A.A. Issledovanie dielektrikov na sverhvysokih chastotah (Research of dielectrics at ultrahigh frequencies. Moscow: Fizmatgiz, 1963 [in Russian].
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library