RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Pulsating combustion of a hydrogen-air mixture in a channel with sudden expansion

PII
S30346126S0207401X25070081-1
DOI
10.7868/S3034612625070081
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 7
Pages
73-92
Abstract
A high-speed turbulent reacting flow in a channel with a sudden expansion in the form of two symmetrically located steps is numerically investigated. Various combustion phases are described: initial phase with low combustion completeness and intensive one with high combustion completeness. In the intensive phase, depending on the heat release power, a pulsating (self-oscillating) combustion mode can be realized with periodic movement of the intensive heat release zone upstream and downstream and also a mode with thermal choking, in which the shock formed in the thermal throat, spreading upstream, enters the narrow injector channel part and blocks the flow. The transition to subsonic flow occurs if the heat release exceeds the total heat flux at the inlet by one and a half times or more. The pulsating mode, in which the velocity in the flow core remains supersonic, is realized if the total heat release power is approximately equal to the heat flux at the channel entrance. An analysis of the stages of the pulsating nonpremixed hydrogen-air combustion showed that the flame flashback accompanied by an increase in heat release, is caused by the boundary layer separation and the formation of a hot wall jet directed toward the step, i.e. against the core flow. After the heat source has stabilized at the beginning of the channel, the heat source power decreases due to the complete burnout of the oxidizer, as a result of which the thermal throat expands and fresh reagents enter the channel. At the end of the channel straight section, a new heat source is formed, which starts moving upstream, and the whole process is repeated periodically.
Keywords
высокоскоростной поток предварительно неперемешанное горение водорода тепловыделение пульсации пламени
Date of publication
15.07.2025
Year of publication
2025
Number of purchasers
0
Views
60

References

  1. 1. Anderson J.D. Fundamentals of Aerodynamics. New York: McGraw-Hill, 2007.
  2. 2. M. Sun, H. Wang, Z. Cai, J. Zhu Unsteady Supersonic Combustion. Singapore: Springer, 2020. https://doi.org/10.1007/978-981-15-3595-6
  3. 3. Liberman M.A. Combustion Physics: Flames, Deto­nations, Explosions, Astrophysical Combustion and Inertial Confinement Fusion. Springer Int. Publ., 2021.
  4. 4. Ларионов В.М., Зарипов Р.Г. Автоколебания газа в установках с горением. Казань: Изд-во Казан. гос. техн. ун-та, 2003.
  5. 5. Meng X., de Jong W., Kudra T. // Renew. Sust. Energ. Rev. 2016. V. 55. P. 73. https://doi.org/10.1016/j.rser.2015.10.110
  6. 6. Poinsot T. // Proc. Comb. Inst. 2017. V. 36. № 1. P. 1. https://doi.org/10.1016/j.proci.2016.05.007
  7. 7. Раушенбах Б.В. Вибрационное горение. М.: Физматгиз, 1967.
  8. 8. Lieuwen T. C. Unsteady Combustor Physics. Cambridge: Cambridge University Press, 2021. https://doi.org/10.1017/9781108889001
  9. 9. Mejia D., Selle L., Bazile R., Poinsot T. // Proc. Combust. Inst. 2015. V. 35. № 3. P. 3201. https://doi.org/10.1016/j.proci.2014.07.015
  10. 10. Choi J.-Y., Ma F., Yang V. // Ibid. 2005. V. 30. P. 2851. https://doi.org/10.1016/j.proci.2004.08.250
  11. 11. Lin K.-C., Jackson K., Behdadnia R. et al. // J. Propul. Power. 2010. V. 26. P. 1161. https://doi.org/10.2514/1.43338
  12. 12. Wang H., Wang Z., Sun M. // Exp. Therm. Fluid Sci. 2013.V. 45. P. 259. https://doi.org/10.1016/j.expthermflusci.2012.10.013
  13. 13. Wang H., Wang Z., Sun M., Wu H. // Sci. China Technol. Sc. 2013. V. 56. P. 1093. https://doi.org/10.1007/s11431-013-5198-1
  14. 14. Wang H., Wang Z., Sun M., Qin N. // Int. J. Hydrogen Energ. 2013. V. 38. P. 5918. https://doi.org/10.1016/j.ijhydene.2013.02.100
  15. 15. Ouyang H., Liu W., Sun M. // Acta Astronaut. 2015. V. 117. P. 90. https://doi.org/10.1016/j.actaastro.2015.07.016
  16. 16. Han Y., He Y., Tian Y., Zhong F., Le J. // Aerosp. Sci. Technol. 2018. V. 72. P. 114. https://doi.org/10.1016/j.ast.2017.11.003
  17. 17. Zhao G.-Y., Sun M.-B., Song X.-L., Li X.-P., Wang H.-B. // Acta Astronaut. 2019. V. 155. P. 255. https://doi.org/10.1016/j.actaastro.2018.12.011
  18. 18. Nguyen T.M., Sirignano W.A. // AIAA J. 2019. V. 57. P. 5351. https://doi.org/10.2514/1.J057743
  19. 19. Vlasenko V.V., Sabelnikov V.A., Molev S.S. et al. // Shock Waves. 2020. V. 30. P. 245. https://doi.org/10.1007/s00193-020-00941-4
  20. 20. Jeong S.-M., Han H.-S., Sung B.-K., Lee E. S., Choi J. AIAA Paper 2021-3535. https://doi.org/10.2514/6.2021-3535
  21. 21. Jeong S.-M., Han H.-S., Sung B.-K., Kim W., Choi J.-Y. // Aerospace. 2023. V. 10. P. 932. https://doi.org/10.3390/aerospace10110932
  22. 22. Wang T., Wang Z., Sun M., Li F., Huang Y. // AIAA J. 2023. V. 61. P. 2591. https://doi.org/10.2514/1.J062051
  23. 23. Guo S., Zhang X., Liu Q., Yue L. // Phys. Fluids. 2023. V. 35. P. 045108. https://doi.org/10.1063/5.0142210
  24. 24. Jeong S.-M., Lee J.-H., Choi J.-Y. // Proc. Combust. Inst. 2023. V. 39. P. 3107. https://doi.org/10.1016/j.proci.2022.07.245
  25. 25. Boulal S., Genot A., Klein J.-M. et al. // Combust. and Flame. 2023. V. 257. P. 112999. https://doi.org/10.1016/j.combustflame.2023.112999
  26. 26. Mohamadi M., Tahsini A. M., Tavazohi R. // Int. J. Hydrogen Energ. 2024. V. 67. P. 769. https://doi.org/10.1016/j.ijhydene.2024.04.205
  27. 27. Yasunaga S., Nakaya S., Tsue M. // Proc. Combust. Inst. 2024. V. 40. P. 105302. https://doi.org/10.1016/j.proci.2024.105302
  28. 28. Zhang L., Li S., Liu T., Zhou H., Ren Z. // Int. J. Hydrogen Energ. 2025. V. 97. P. 444. https://doi.org/10.1016/j.ijhydene.2024.11.402
  29. 29. Zakharova Y.V, Fedorova N. N., Goldfeld M. A., Vankova O. S. // J. Phys. Conf. Ser. 2019. V. 1382. P. 012055. https://doi.org/10.1088/1742-6596/1382/1/012055
  30. 30. Федорова Н.Н., Гольдфельд М.А // Письма в ЖТФ. 2021. Т. 47. № 2. С. 3. http://dx.doi.org/10.21883/PJTF.2021.02.50536.18525
  31. 31. Федорова Н.Н., Ванькова О.С., Гольдфельд М.А.// Физика горения и взрыва. 2022. Т. 58. № 2. С. 3. https://doi.org/ 10.15372/FGV20220201
  32. 32. Федорова Н.Н., Гольдфельд М.А., Пикалов В.В.// Физика горения и взрыва. Т. 58. № 5. С. 33. https://doi.org/ 10.15372/FGV20220505
  33. 33. Федорова Н.Н., Гольдфельд М.А., Пикалов В.В.// Физика горения и взрыва. Т. 58. № 5. С. 44. https://doi.org/ 10.15372/FGV20220506
  34. 34. Федорова Н.Н. // Физика горения и взрыва. 2023. Т. 59. № 4. С. 12. https://doi.org/ 10.15372/FGV2023.9304
  35. 35. Гольдфельд М.А.// Теплофизика и аэромеханика. 2020. Т. 27. № 4. С. 601.
  36. 36. Maas U., Warnatz J. // Combust. and Flame. 1988. V. 74. № 1. P. 53. https://doi.org/10.1016/0010-2180 (88)90086-7
  37. 37. Ванькова О.С., Фёдорова Н.Н.// Физика горения и взрыва. 2021. Т. 57. № 4. С. 18. https://doi.org/ 10.15372/FGV20210402
  38. 38. Yamashita H., Shimada M., Takeno T. // Proc. Combust. Inst. 1996. V. 26. P. 27. https://doi.org/10.1016/S0082-0784 (96)80196-2
  39. 39. Gerlinger P., Stoll P., Kindler M., Schneider F., Aig­ner M. // Aerosp. Sci. Technol. 2008. V. 12(2). P. 159. https://doi.org/10.1016/j.ast.2007.04.003
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library