RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Kinetic analysis of the effect of propylene additive on ignition and combustion of hydrogen-air mixtures

PII
S30346126S0207401X25080014-1
DOI
10.7868/S3034612625080014
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 8
Pages
3-17
Abstract
The results of kinetic analysis are presented taking into account the rates of chemical reactions and heat release when solving problems of spontaneous ignition and laminar combustion of hydrogen-air reactions with a 1% addition of propylene. The solution was obtained using computer modeling. It has been shown that the addition of propylene to hydrogen-air mixtures significantly slows down the course of chemical reactions due to the recombination of atomic hydrogen during spontaneous combustion in the entire range of initial temperatures from 800 to 1400 K, as well as during the propagation of laminar combustion waves in rich and stoichiometric mixtures. However, propylene is a flammable substance, and during its decomposition and oxidation, heat is released, which increases the rate of temperature increase. As a consequence, under certain conditions, in particular at an initial temperature of 800 K, with the reduced rates of chemical reactions of hydrogen oxidation, as well as in the case of lean mixtures, the addition of propylene leads not to an increase, but to a decrease in the ignition delay, and to a significant increase in the temperature and speed of propagation of the combustion wave. Additional data were obtained on the important role played in laminar flames of hydrogen-air mixtures by reactions involving the HO2 radical: the branching reaction HO2+H => OH+OH and the trimolecular reaction H+O2(+M) => HO2(+M), as well as the maximum concentration of the HO2 radical. These reactions proceed at high rates in the low temperature area due to the participation of atomic hydrogen diffusing from the high temperature area of the flame and provide a significant contribution to the release of heat. The maximum concentration of the HO2 radical is achieved at the temperature that presumably corresponds to the “leading zone” of combustion. When propylene is added, the change in the maximum concentration of the radical correlates with the change in the velocity of normal combustion.
Keywords
водородно-воздушные смеси пропилен самовоспламенение ламинарное пламя кинетический анализ
Date of publication
15.08.2025
Year of publication
2025
Number of purchasers
0
Views
70

References

  1. 1. Азатян В.В., Борисов А.А., Мержанов А.Г и др. // Физика горения и взрыва. 2005. Т. 41. № 1. С. 3.
  2. 2. Азатян В.В., Павлов В.А., Шаталов О.П. // Кинетика и катализ. 2005. Т. 46. № 6. С. 835.
  3. 3. Азатян В.В. Цепные реакции в процессах горения, взрыва и детонации газов. Черноголовка: Изд-во РАН, 2017. ISBN 978-5-9908297-2-5
  4. 4. Азатян В.В. Цепные реакции горения, взрыва и детонации в газах. Химические методы управления. М.: Изд-во РАН. 2020. ISBN 978-5-907036-77-2
  5. 5. Bunev A.V., Babkin V.S. // Mendeleev Commun. 2006. V. 16. Issue 2. P.104. https://doi.org/10.1070/MC2006v016n02ABEH002270
  6. 6. Азатян В.В., Бакланов Д.И., Гордополова И.С., Абрамов С.К., Пилоян А.А. // ДАН. 2007. Т. 415. № 2. С. 210.
  7. 7. Азатян В.В., Медведев С.Н., Фролов С.М. // Хим. физика. 2010. Т. 29. № 4. С. 56.
  8. 8. Бунев В.А., Большова Т.А., Бабкин В.С. // Физика горения и взрыва. 2016. Т. 52. № 3. С. 3. https://doi.org/ 10.15372/FGV20160301
  9. 9. Смирнов Н.Н., Никитин В.Ф., Михальченко Е.В., Стамов Л.И. // Физика горения и взрыва. 2022. Т. 58. № 5. С. 64. https://doi.org/ 10.15372/FGV20220508
  10. 10. Smirnov N.N., Azatyan V.V., Nikitin V.F. et. Al. // Int. J. Hydrogen Energy. 2024. V. 49. P. 1315. https://doi.org/10.1016/j.ijhydene.2023.11.085
  11. 11. Беляев А.А., Ермолаев Б.С., Гордополова И.С. // Горение и взрыв. 2024. Т. 17. № 1. С. 27. https://doi.org/10.30826/CE24170103
  12. 12. Беляев А.А., Ермолаев Б.С. // Хим. физика. 2024. Т. 43. №. 8. С.10. https://doi.org/10.31857/S0207401X24080023
  13. 13. ANSYS Academic Research CFD. CHEMKIN-Pro 15112. – San Diego, CA, USA: Reaction Design, 2011. CK-TUT-10112-1112-UG-1
  14. 14. NUIGMech1.1. National University of Ireland Galway, 2020. https://www.universityofgalway.ie/combustionchemistrycentre/mechanismdownloads/
  15. 15. Арутюнов В.С., Арутюнов А.В., Беляев А.А., Трошин К.Я. // Успехи химии. 2022. Т. 92. № 7. RCR5084. https://doi.org/10.59761/RCR5084.
  16. 16. Qin Z., Yang H., Gardiner W.C. // Combust. and Flame. 2001. V. 124. P. 246.
  17. 17. Burke S.M., Metcalfe W., Herbinet O. et. al. // Combust. and Flame. 2014. V. 161. P. 2765.
  18. 18. http: //dx.doi.org/10.1016/j.combustflame.2014.05.010
  19. 19. Burke S.M., Burke U., Mc Donagh R., et. al. // Combust. and Flame. 2015. V. 162. No. 2. P. 296.
  20. 20. http: //dx.doi.org/10.1016/j.combustflame.2014.07.032
  21. 21. Козлов П.В., Котов В.А., Герасимов Г.Я. и др. // Хим. физика. 2024. Т. 43. № 8. С. 42. https://doi.org/10.31857/S0207401X24080056
  22. 22. Погосян Н.М., Погосян М.Дж., Давтян А.Г. и др. // Хим. физика. 2024. Т. 43. № 5. С. 68. https://doi.org/10.31857/0207401X24050081
  23. 23. Гельфанд Б.Е. // Физика горения и взрыва. 2002. Т. 38. № 5. С. 101.
  24. 24. Льюис Б., Эльбе Г. Горение, пламя и взрывы в газах. Пер. с англ. М.: Мир, 1968.
  25. 25. Dahoe A.E. // Journal of Loss Prevention in the Process Industries. 2005. V. 18. No. 3. P. 152. https://doi.org/10.1016/j.jlp.2005.03.007
  26. 26. Гельфанд Б.Е., Попов О.Е., Чайванов Б.Б. Водород: параметры горения и взрыва. М.: Физматлит, 2008. ISBN: 978-5-9221-0898-0
  27. 27. Тереза А.М., Агафонов Г.Л., Андержанов Э.К. и др. // Хим. физика. 2023. Т. 42. № 8. С. 68. https://doi.org/ 10.31857/S0207401X23080113
  28. 28. Зельдович Я.Б., Баренблатт Г.И., Либрович В.Б., Махвиладзе Г.М. Математическая теория горения и взрыва. М.: Наука, 1980.
  29. 29. Бахман Н.Н., Беляев А.Ф. Горение гетерогенных конденсированных систем. М.: Наука, 1967.
  30. 30. Тереза А.М., Агафонов Г.Л., Андержанов Э.К. и др. // Хим. физика. 2023. Т. 42. № 12. С. 48. https://doi.org/ 10.31857/S0207401X23120130
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library