- PII
- S30346126S0207401X25080068-1
- DOI
- 10.7868/S3034612625080068
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 44 / Issue number 8
- Pages
- 54-63
- Abstract
- Numerical simulations of flame structure and laminar burning velocity are performed for a stoichiometric hydrogen–air mixture under standard initial conditions. A comparative analysis is presented of the results obtained using three detailed kinetic mechanisms (DKMs), which differ both in the set of elementary reaction steps and reacting species and in the values of rate constants. It is found that the decrease in H2 concentration has a weakly pronounced two-stage character. In the presence of an additional initiation channel H2+O2=OH+OH, a pronounced second maximum of the intermediate H2O2 concentration appears. In the absence of this channel, a two-stage increase in OH concentration is observed. Based on an analysis of the sensitivity of heat release to reaction rate constants, the complex behavior of the OH and H2O2 profiles is explained. Despite the differences revealed, all three DKMs predict similar values of burning velocity and heat release rate.
- Keywords
- стехиометрическая водородно-воздушная смесь ламинарное пламя численное моделирование тепловыделение детальный кинетический механизм химическая кинетика
- Date of publication
- 15.08.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 41
References
- 1. Sanchez A.L., Williams F.A. // Prog. Energy Combust. Sci. 2014. V. 41. P. 1. https://doi.org/10.1016/j.pecs.2013.10.002
- 2. Губернов В.В. Автореф. дис. … д-ра ф.-м. наук. М.: Физ. ин-т им. П.Н. Лебедева РАН, 2013.
- 3. Шмаков А.Г. Автореф. дис. … д-ра хим. наук. Нск: ИХКГ СО РАН, 2022.
- 4. Kudriakov S., Studer E., Bin C. // Intern. J. Hydrogen Energy. 2011. V. 36. № 3. P. 2555. https://doi.org/10.1016/j.ijhydene.2010.03.138
- 5. Gai G., Kudriakov S., Rogg B. et al. // Int. J. Hydrogen Energy. 2019. V. 44. № 31. P. 17015. https://doi.org/10.1016/j.ijhydene.2019.04.225
- 6. Yakovenko I.S., Ivanov M.F., Kiverin A.D., Melnikova K.S. // Int. J. Hydrogen Energy. 2018. V. 43. P. 1894. https://doi.org/10.1016/j.ijhydene.2017.11.138
- 7. Yakovenko I., Kiverin A., Melnikova K. // Fluids. 2021. V. 6. №. 1. P. 21. https://doi.org/10.3390/fluids6010021
- 8. Яковенко И.С., Медведков И.С., Киверин А.Д. // Хим. физика. 2022. Т. 41. № 3. С. 85.
- 9. Тереза А.М., Агафонов Г.Л., Андержанов Э.К. и др. // Хим. физика. 2023. Т. 42. № 8. С. 68.
- 10. Тереза А.М., Агафонов Г.Л., Андержанов Э.К. и др. // Хим. физика. 2023. Т. 42. № 12. С. 48.
- 11. Moroshkina A., Yakupov E., Mislavskii V., et al. // Acta Astronautica. 2024. V. 215. P. 496. https://doi.org/10.1016/j.actaastro.2023.12.032
- 12. Франк-Каменецкий Д.А. Диффузия и теплопередача в химической кинетике. М.: Наука, 1987.
- 13. Hong Z., Davidson D.F., Hanson R.K. // Combust. and Flame. 2011. V. 158. No. 4. P. 633. https://doi.org/10.1016/j.combustflame.2010.10.002
- 14. Keromnes A., Metcalfe W. K., Heufer K. A. et al. // Combust. and Flame. 2013. V. 160. P. 995. https://doi.org/10.1016/j.combustflame.2013.01.001
- 15. Smith G. P., Tao Y., Wang H. Foundational Fuel Chemistry Model. Ver. 1.0 (FFCM-1), 2016. http://web.stanford.edu/group/haiwanglab/FFCM-1/index.html
- 16. Hashemi H., Christensen J.M., Gersen S., Glarborg P. // Proc. Combust. Inst. 2015. V. 3. P. 553. https://doi.org/10.1016/j.proci.2014.05.101
- 17. Konnov A.A. // Combust. and Flame. 2019. V. 203. P. 14. https://doi.org/10.1016/j.combustflame.2019.01.032
- 18. Zhang Y., Fu J., Xie M., Liu J. // Int. J. Hydrogen Energy. 2021. V. 46. №. 7. P. 5799. https://doi.org/10.1016/j.ijhydene.2020.11.083
- 19. Krivosheyev P., Kisel Y., Skilandz A. et al. // Int. J. Hydrogen Energy. 2024. V. 66. P. 81. https://doi.org/10.1016/j.ijhydene.2024.03.363
- 20. Nikitin V.F., Mikhalchenko E.V., Stamov L.I. et al. // Acta Astronaut. 2023. V. 213. P. 156. https://doi.org/10.1016/j.actaastro.2023.08.036
- 21. Smirnov N.N., Azatyan V.V., Nikitin V.F. et al. // Int. J. Hydrogen Energy. 2023. V. 49. Part B2. P. 1315. https://doi.org/10.1016/j.ijhydene.2023.11.085.
- 22. Smirnov N.N., Nikitin V.F., Mikhalchenko E.V. et al. // Int. J. Hydrogen Energy. 2023. V. 49. Part B2. P. 495. https://doi.org/10.1016/j.ijhydene.2023.08.184
- 23. Тереза А.М., Агафонов Г.Л., Андержанов Э.К. и др. // Хим. физика. 2025. Т. 44. № 4. С. 79.
- 24. CHEMKIN-Pro 15112. Reaction Design. San Diego, CK-TUT-10112-1112-UG-1, 2011.
- 25. Alekseev V. PhD. Theses. Lund, Sweden: Lunds Univ., 2015.
- 26. Lutz A.E., Kee R.J., Miller J.A. Sandia National Laboratories. Livermore, CA, SAND 87-8248, 1998.
- 27. Тереза А.М., Агафонов Г.Л., Андержанов Э.К. и др. // Хим. физика. 2024. Т. 43. № 7. C. 73.
- 28. Kee R.J., Grcar J.F., Smooke M.D., Miller J.A. Sandia National Laboratories. Livermore, CA, SAND85-8240, 1985.
- 29. Kwon O.C., Faeth G.M. // Combust. and Flame. 2001. V. 124. P. 590. https://doi.org/10.1016/S0010-2180 (00)00229-7
- 30. Бунев В.А., Панфилов В.Н., Бабкин В.С. // Физика горения и взрыва. 2007. Т. 43. № 2. С. 3
- 31. Коробейничев О.П., Шварцберг В.М., Ильин С.Б. // Физика горения и взрыва. 1999. Т. 35. № 3. С. 29.
- 32. Азатян В.В. // Кинетика и катализ. 2020. Т. 61. № 3. С. 291.
- 33. Medvedev S., Agafonov G., Khomik S. // Acta Astronautica. 2016. V. 126. P. 150. https://doi.org/10.1016/j.actaastro.2016.04.019