- PII
- 10.31857/S0207401X23020103-1
- DOI
- 10.31857/S0207401X23020103
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 42 / Issue number 2
- Pages
- 83-87
- Abstract
- The effect of microwave radiation treatment on the widely used technical acrylonitrile-butadiene-styrene (ABS) polymer widely used for 3D-printing is studied. The chemical structure and tensile strength characteristics of filled (with 3 wt % carbon fiber) and unfilled ABS plastic irradiated with microwave radiation for 300, 600, 900, and 1200 s are evaluated. It is shown that the effective irradiation time for the mechanical improvement of the filled samples is 300 s, while no significant changes in the mechanical characteristics of the initial ABS samples are found.
- Keywords
- СВЧ-излучение сополимер акрилонитрила бутадиена и стирола ИК-спектроскопия механическое напряжение деформация.
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 2
References
- 1. Zhang M., Song X., Grove W. et al. // Proc. ASME 2016 11th Intern. Manufacturing Science and Engineering Conf. V. 3. Blacksburg, Virginia, USA: ASME, 2016. V003T08A007; https://doi.org/10.1115/MSEC2016-8790
- 2. Lebedeva E.A., Astaf’eva S.A., Istomina T.S. et al. // App. Surf. Sci. 2022. V. 602. 154251; https://doi.org/10.1016/j.apsusc.2022.154251
- 3. Ahmadreza A., Mohammad L., Jamal Ch. // Appl. Thermal Engin. 2021. V. 193. 117003; https://doi.org/10.1016/j.applthermaleng.2021.117003
- 4. Ferrari A., Hunt J., Lita A. et al. // J. Phys. Chem. C. 2014. V. 118. P. 9346; https://doi.org/10.1021/jp501206n
- 5. Zhou J., Xu W., You Z. et al. // Sci. Rep. 2016. V. 6. 25149; https://doi.org/10.1038/srep25149
- 6. Amini A., Maeda T., Ohno K., Kunitomo K. // ISIJ Intern. 2019. V. 59. P. 672; https://doi.org/10.2355/isijinternational.ISIJINT-2018-391
- 7. Жарова П.А., Чистяков А.В., Лесин С.В. и др. // Хим. физика. 2019. Т. 38. № 6. С. 35; https://doi.org/10.1134/S0207401X19060104
- 8. Li J., Chen F., Yang L. et al. // Spectroch. Acta, Part A. 2017. V. 184. P. 361; https://doi.org/10.1016/j.saa.2017.04.075
- 9. Ливанова Н.М., Хазова В.А., Правада Е.С. и др. // Хим. физика. 2022. Т. 41. № 7. С. 67; https://doi.org/10.31857/S0207401X2207010X
- 10. Шибряева Л.С., Люсова Л.Р., Карпова С.Г., Наумова Ю.А. // Хим. физика. 2022. Т. 41. № 4. С. 44; https://doi.org/10.31857/S0207401X22040070
- 11. De Paoli M.A. // Eur. Polym. J. 1983. V. 19. P. 761; https://doi.org/10.1016/0014-3057 (83)90145-3
- 12. Guyader M., Audouin L., Colin X. et al. // Polym. Degrad. Stab. 2006. V. 91. P. 2813; https://doi.org/10.1016/j.polymdegradstab.2006.04.009
- 13. Tiganisa B.E., Burna L.S., Davisa P., Hill A.J. // Ibid. 2002. V. 76. P. 425; https://doi.org/10.1016/S0141-3910 (02)00045-9
- 14. Левин П.П., Ефремкин А.Ф., Худяков И.В. // Хим. физика. 2020. Т. 39. № 6. С. 59; https://doi.org/10.31857/S0207401X20060059
- 15. Злобина И.В., Бекренев Н.В., Павлов С.П. // Вестн. ЮУрГУ. Сер. “Машиностроение”. 2017. Т. 17. № 4. С. 70; https://doi.org/10.14529/engin170407
- 16. Brostow W., Lobland H.E.H., Hnatchuk N., Perez J.M. // Nanomaterials. 2017. V. 7. P. 66; https://doi.org/10.3390/nano7030066
- 17. Chopra S., Pande K., S. Tupe P. et al. // Polym. Eng. Sci. 2021. V. 61. P. 3125; https://doi.org/10.1002/pen.25825
- 18. Нуруллаев Э.М. // Прикл. механика и техн. физика. 2021. Т. 62. № 2. С. 53; https://doi.org/10.15372/PMTF20210205
- 19. Исакова А.А., Грибкова О.Л., Алиев А.Д. и др. // Физикохимия поверхности и защита материалов. 2020. Т. 56. № 4. С. 406; https://doi.org/10.31857/S0044185620040129
- 20. Fonseca L.P., Waldman W.R., De Paoli M.A. // Composites Part C. 2021. V. 5. 100142; https://doi.org/10.1016/j.jcomc.2021.100142
- 21. Mishra R.R., Sharma A.K. // Composites Part A. 2016. V. 81. P. 78; https://doi.org/10.1016/j.compositesa.2015.10.035
- 22. Ливанова Н.М., Попов А.А. // Хим. физика. 2019. Т. 38. № 3. С. 64; https://doi.org/10.1134/S0207401X19020109