RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Verification of the Conclusions of the Microheterogeneous Model of Gas-Free Combustion at the Macroscopic Level

PII
10.31857/S0207401X23030081-1
DOI
10.31857/S0207401X23030081
Publication type
Status
Published
Authors
Volume/ Edition
Volume 42 / Issue number 3
Pages
23-29
Abstract
The combustion velocities of two fractions of mechanically activated Ni + Al mixtures are compared in this paper. The combustion of pressed samples and samples of bulk density is studied. The main aim of the study is to experimentally verify the main conclusions of the microheterogeneous model of gas-free combustion at the macrolevel using an activated Ni + Al mixture as an example. The relative elongation, the combustion velocity of the samples, the macrostructure, and phase composition of the synthesis products are studied. The combustion velocity is maintained with a change in the density of the samples and slightly increases with a decrease in the size of the composite particles. It is established that pressed samples during combustion elongate more strongly than samples from bulk density. Samples consisting of large particles elongate more strongly during combustion than samples consisting of smaller particles. The phase composition of combustion products depends on the fraction of composite particles and sample density. An explanation of the regularities observed in this study is proposed.
Keywords
горение механическая активация интерметаллиды смесь Ni + Al фракции композитных частиц микрогетерогенная модель примесное газовыделение.
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Сычев А.Е., Вадченко С.Г., Щукин А.С. и др. // Хим. физика. 2022. Т. 41. № 1. С. 69; https://doi.org/10.31857/S0207401X22010150
  2. 2. Кришеник П.М., Костин С.В., Рогачев С.А. // Хим. физика. 2022. Т. 41. № 3. С. 73; https://doi.org/10.31857/S0207401X22030086
  3. 3. Вадченко С.Г., Алымов М.И. // Хим. физика. 2022. Т. 41. № 3. С. 22; https://doi.org/10.31857/S0207401X2203013X
  4. 4. Рогачев А.С., Мукасьян А.С. // Физика горения и взрыва. 2015. Т. 51. № 1. С. 66.
  5. 5. Вадченко С.Г. // Там же. 2002. Т. 38. № 1. С. 55.
  6. 6. Рогачев А.С., Вадченко С.Г., Кочетов Н.А. и др. // Горение и плазмохимия. 2016. Т. 14. № 4. С. 294.
  7. 7. Рогачев А.С., Кочетов Н.А., Курбаткина В.В. и др. // Физика горения и взрыва. 2006. Т. 42. № 4. С. 61.
  8. 8. Рогачев А.С. // Там же. 2003. Т. 39. № 2. С. 38.
  9. 9. Корчагин М.А., Григорьева Т.Ф., Бохонов Б.Б. и др. // Там же. № 1. С. 51.
  10. 10. Корчагин М.А., Григорьева Т.Ф., Бохонов Б.Б. и др. // Там же. С. 60.
  11. 11. Кочетов Н.А., Сеплярский Б.С. // Физика горения и взрыва. 2014. Т. 50. № 4. С. 29.
  12. 12. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2022. Т. 41. № 1. С. 42; https://doi.org/10.31857/S0207401X22010071
  13. 13. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2020. Т. 39. № 9. С. 39; https://doi.org/10.31857/S0207401X20090058
  14. 14. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2018. Т. 37. № 10. С. 44; https://doi.org/10.1134/S0207401X18100059
  15. 15. Рогачев А.С. // Успехи химии. 2019. № 9. С. 875; https://doi.org/10.1070/RCR4884
  16. 16. Kamynina O.K., Rogachev A.S., Sytschev A.E., Umarov L.M. // Intern. J. Self-Propag. High-Temp. Synth. 2004. V. 13. № 3. P. 193.
  17. 17. Камынина О.К., Рогачев А.С., Умаров Л.М. // Физика горения и взрыва. 2003. Т. 39. № 5. С. 69.
  18. 18. Vadchenko S.G. // Intern. J. Self-Propag. High-Temp. Synth. 2016. V. 25. № 4. P. 210; https://doi.org/10.3103/S1061386216040105
  19. 19. Vadchenko. S.G. // Ibid. 2015. V. 24. № 2. P. 90; https://doi.org/10.3103/S1061386215020107
  20. 20. Гегузин Я.Е. Физика спекания. М.: Наука, 1984.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library