RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Argon Radiation Behind a Strong Shock Wave: Experiment and Direct Simulation by the Monte Carlo Method

PII
10.31857/S0207401X23040106-1
DOI
10.31857/S0207401X23040106
Publication type
Status
Published
Authors
Volume/ Edition
Volume 42 / Issue number 4
Pages
57-63
Abstract
The radiation characteristics of shock-heated argon are measured in the shock-wave velocity range of 4.5 to 7.8 km/s at gas pressures ahead of the shock wave front of 0.25, 1.0, and 5.0 Torr. Time-integrated sweeps of radiation and the time dependences of the radiation intensity of shock-heated argon at the wavelength of 420 nm are obtained in absolute units. The results of direct statistical simulation by the Monte Carlo method of radiation-chemical processes in the argon behind the front of a strong shock wave are presented. The model takes into account the processes of excitation and ionization of an atom by electron impact, emission and absorption for a discrete spectrum, bremsstrahlung, photoionization, and photorecombination, as well as the broadening of atomic lines. The experimental and calculated data are compared.
Keywords
ударная волна эксперимент ударная труба неравновесное излучение аргон метод DSMC.
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Surzhikov S. // AIAA Paper. 2017. № 2017-1147.
  2. 2. Park C. Nonequilibrium Hypersonic Aerothermodynamics. N.Y.: Wiley, 1990.
  3. 3. Суржиков С.Т. // Хим. физика. 2010. Т. 29. № 7. С. 48.
  4. 4. Johnston C.O., Brandis A.M. // J. Spacecr. Rockets. 2015. V. 52. P. 105.
  5. 5. Суржиков С.Т. Компьютерная аэрофизика спускаемых космических аппаратов. Двухмерные модели. М.: Физматлит, 2018.
  6. 6. Lemal A., Jacobs C.M., Perrin M.-Y. et al. // J. Thermophys. Heat Transfer. 2016. V. 30. P. 197.
  7. 7. Kano K., Suzuki M., Akatsuka H. // Plasma Sources Sci. Technol. 2000. V. 9. P. 314.
  8. 8. Kapper M.G., Cambier J.-L. // J. Appl. Phys. 2011. V. 109. № 113308.
  9. 9. Abrantes R.J.E., Karagozian A.R., Bilyeu D., Le H.P. // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 216. P. 47.
  10. 10. Evdokimov K.E., Konischev M.E., Pichugin V.F., Sun Z. // Resour.-Effic. Technol. 2017. V. 3. P. 187.
  11. 11. Chai K.-B., Kwon D.-H. // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 227. P. 136.
  12. 12. Dzierżęga K., Zawadzki W., Sobczuk F. et al. // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 237. № 106635.
  13. 13. Sun J.-H., Sun S.-R., Zhang L.-H., Wang H.-X. // Plasma Chem. Plasma Process. 2020. V. 40. P. 1383.
  14. 14. Козлов П.В., Забелинский И.Е., Быкова Н.Г., Герасимов Г.Я., Левашов В.Ю. // Хим. физика. 2021. Т. 40. № 12. С. 23.
  15. 15. Забелинский И.Е., Козлов П.В., Акимов Ю.В. и др. // Хим. физика. 2021. Т. 40. № 11. С. 22.
  16. 16. Козлов П.В., Забелинский И.Е., Быкова Н.Г. и др. // Хим. физика. 2021. Т. 40. № 8. С. 26.
  17. 17. Bird G.A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford: Clarendon Press, 1994.
  18. 18. Mewes D., Mayinger F. // Rarefied Gas Dynamics. Heat and Mass Transfer. Berlin: Springer, 2005. P. 275.
  19. 19. Кусов А.Л. // Мат. моделирование. 2015. Т. 27. № 12. С. 33.
  20. 20. Titarev V.A., Frolova A.A., Rykov V.A. et al. // J. Comput. Appl. Math. 2020. V. 364. № 112354.
  21. 21. Beyer J., Pfeiffer M., Fasoulas S. // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 280. № 108083.
  22. 22. Кусов А.Л., Левашов В.Ю., Герасимов Г.Я. др. // Физ.-хим. кинетика в газ. динамике. 2020. Т. 21. № 2. С. 1.
  23. 23. Zatsarinny O., Bartschat K. // J. Phys. B. 2004. V. 37. № 23. P. 4693.
  24. 24. Zatsarinny O., Wang Y., Bartschat K. // Phys. Rev. A. 2014. V. 89. 022706.
  25. 25. Hoshino M., Murai H., Kato H. et al. // Chem. Phys. Lett. 2013. V. 585. P. 33.
  26. 26. Filipović D.M., Marinković B.P., Pejčev V., Vušković L. // J. Phys. B. 2000. V. 33. № 11. P. 2081.
  27. 27. Бай Ши-и. Динамика излучающего газа. М.: Мир, 1968.
  28. 28. Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Физматлит, 2008.
  29. 29. Jung Y.-D., Kim C.-G. // J. Plasma Phys. 2002. V. 67. P. 191.
  30. 30. Левашов В.Ю., Козлов П.В., Быкова Н.Г., Забелинский И.Е. // Хим. физика. 2021. Т. 40. № 1. С. 16.
  31. 31. Collen P.L., Doherty L.J., McGilvray M. // Intern. Conf. FAR-2019. 2019. № 1053360.
  32. 32. Bristow M.P.F. // UTIAS. Tech. Rep. № 158. 1971.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library