- PII
- 10.31857/S0207401X23050059-1
- DOI
- 10.31857/S0207401X23050059
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 42 / Issue number 5
- Pages
- 51-60
- Abstract
- The properties of a specially created analytical model of conformational rearrangements of a Gaussian macromolecular chain adsorbed on the surface of a metal nanoparticle in an external electric field are investigated. The results of calculations based on this model of the structure of polyelectrolyte chains and molecular dynamics (MD) modeling of polypeptide conformations near a gold nanoparticle are presented. It is found that an increase in the strength of the external electric field leads to a displacement of the links of the macromolecular edge to one of the poles of the polarized nanoparticle.
- Keywords
- поляризованная наночастица полиэлектролит конформационные изменения гауссова модель макромолекулярная цепь молекулярная динамика.
- Date of publication
- 01.05.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 45
References
- 1. Zhang P., Chiu Y., Tostanoski L.H. et al. // ACS Nano. 2015. V. 9. P. 6465; https://doi.org/10.1021/acsnano.5b02153
- 2. Zhang H., Nayak S., Wang W. et al. // Langmuir. 2017. V. 33. P. 12227; https://doi.org/10.1021/acs.langmuir.7b02359
- 3. Fuller M.A., Köper I. // Nano Convergence. 2019. V. 6. P. 11; https://doi.org/10.1186/s40580-019-0183-4
- 4. Qiu T.A., Torelli M.D., Vartanian A.M. et al. // Anal. Chem. 2017. V. 89. P. 1823; https://doi.org/10.1021/acs.analchem.6b04161
- 5. Angelatos A.S., Radt B., Caruso F. // J. Phys. Chem. B. 2005. V. 109. P. 3071; https://doi.org/10.1021/jp045070x
- 6. Дохликова Н.В., Гатин А.К., Сарвадий С.Ю. и др. // Хим. физика. 2020. Т. 39. № 9. С. 9; https://doi.org/10.1134/S1990793120050036
- 7. Гришин М.В., Гатин А.К., Слуцкий В.Г. и др. // Хим. физика. 2021. Т. 40. № 6. С. 10; https://doi.org/10.1134/S1990793121020196
- 8. Дохликова Н.В., Гатин А.К., Сарвадий С.Ю. и др. // Хим. физика. 2021. Т. 40. № 7. С. 67; https://doi.org/10.1134/S1990793121040023
- 9. Гришин М.В., Гатин А.К., Слуцкий В.Г. и др. // Хим. физика. 2022. Т. 41. № 6. С. 3; https://doi.org/10.1134/S199079312232001X
- 10. Chen Y., Cruz-Chu E.R., Woodard J. et al. // ACS Nano. 2012. V. 6. P. 8847. https://doi.org/10.1021/nn3027408
- 11. Cantini E., Wang X., Koelsch P. et al. // Acc. Chem. Res. 2016. V. 49. P. 1223. https://doi.org/10.1021/acs.accounts.6b00132
- 12. Кручинин Н.Ю., Кучеренко М.Г. // Коллоид. журн. 2019. Т. 81. С. 175; https://doi.org/10.1134/S1061933X19020078
- 13. Кручинин Н.Ю., Кучеренко М.Г. // ЖФХ. 2020. Т. 94. С. 1066; https://doi.org/10.1134/S0036024420070171
- 14. Кручинин Н.Ю., Кучеренко М.Г. // Биофизика. 2020. Т. 65. С. 219; https://doi.org/10.1134/S0006350920020104
- 15. Кручинин Н.Ю., Кучеренко М.Г. // Коллоид. журн. 2020. Т. 82. С. 177; https://doi.org/10.1134/S1061933X20020088
- 16. Кручинин Н.Ю., Кучеренко М.Г. // Коллоид. журн. 2020. Т. 82. С. 440; https://doi.org/10.1134/S1061933X20040067
- 17. Кучеренко М.Г., Русинов А.П., Чмерева Т.М. и др. // Оптика и спектроскопия. 2009. Т. 107. С. 510; https://doi.org/10.1134/S0030400X0909029X
- 18. Kucherenko M.G., Izmodenova S.V., Kruchinin N.Yu. et al. // High Energy Chem. 2009. V. 43. P. 592; https://doi.org/10.1134/S0018143909070169
- 19. Phillips J.C., Braun R., Wang W. et al. // J. Comput. Chem. 2005. № 26. P. 1781; https://doi.org/10.1002/jcc.20289
- 20. Кучеренко М.Г., Чмерева Т.М. // Вестн. ОГУ. 2008. № 9. С. 177.
- 21. Кучеренко М.Г., Кручинин Н.Ю., Чмерева Т.М. // Вестн. ОГУ. 2010. № 5. С. 124.
- 22. Кучеренко М.Г., Измоденова С.В., Чмерева Т.М. и др. // Вестн. ОГУ. 2013. № 9. С. 100.
- 23. Гросберг А.Ю., Хохлов А.P. Статистическая физика макромолекул. М.: Наука, 1989.
- 24. MacKerell Jr. A.D., Bashford D., Bellott M. et al. // J. Phys. Chem. B. 1998. V 102. P. 3586; https://doi.org/10.1021/jp973084f
- 25. Heinz H., Vaia R.A., Farmer B.L. et al. // J. Phys. Chem. C. 2008. V. 112. P. 17281; https://doi.org/10.1021/jp801931d
- 26. Jorgensen W.L., Chandrasekhar J., Madura J.D. et al. // J. Chem. Phys. 1983. V. 79. P. 926; https://doi.org/10.1063/1.445869
- 27. Darden T., York D., Pedersen L. // J. Chem. Phys. 1993. V. 98. P. 10089; https://doi.org/10.1063/1.464397
- 28. Shankla M., Aksimentiev A. // Nature Commun. 2014. V. 5. P. 5171; https://doi.org/10.1038/ncomms6171