- Код статьи
- 10.31857/S0207401X23060031-1
- DOI
- 10.31857/S0207401X23060031
- Тип публикации
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 42 / Номер выпуска 6
- Страницы
- 77-87
- Аннотация
- Проведен расчет зависимости дипольного момента перехода S0 → S1 хлорофилла a от величины индекса рефракции n растворителя. Проанализированы взаимодействия между электрическим полем световой волны, электронным переходом пигмента в возбужденное состояние и диэлектрической поляризацией оптической среды. Эффект реактивного увеличения переходного дипольного момента молекулы хлорофилла a в растворителях с различной величиной индекса рефракции рассчитан в рамках нестационарной теории функционала плотности (TD–DFT) с использованием гибридного функционала LC-ωPBE и модели поляризуемого континуума. Расчеты ab initio аппроксимированы моделью реактивного поля Онзагера с эффективной поляризуемостью хлорофилла равной 21 Å3. Модель количественно описывает экспериментальную зависимость коэффициента экстинкции хлорофилла a в растворителях с индексом рефракции 1.3 < n < 1.7. В белковом окружении с индексом рефракции n = 1.4 величина дипольного момента перехода хлорофилла составляет 5.5 Д. Для этого окружения было рассчитано распределение электростатического потенциала в основном и возбужденном состояниях хлорофилла; расчеты ab initio аппроксимированы набором парциальных переходных зарядов, расположенных на тяжелых атомах π-сопряженной системы молекулы хлорофилла.
- Ключевые слова
- хлорофилл <i>a</i> реактивное поле сила осциллятора дипольный момент перехода модель континуальной поляризуемой среды переходные парциальные заряды.
- Дата публикации
- 14.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 3
Библиография
- 1. Mirkovic T., Ostroumov E.E., Anna J.M. et al. // Chem. Rev. 2017. V. 117. № 2. P. 249; https://doi.org/10.1021/acs.chemrev.6b00002
- 2. Zucchelli G., Jennings R.C., Garlaschi F.M. et al. // Biophys. J. 2002. V. 82. № 1. P. 378; https://doi.org/10.1016/S0006-3495 (02)75402-7
- 3. Madjet M.E., Abdurahman A., Renger T. // J. Phys. Chem. B. 2006. V. 110. № 34. P. 17268;. https://doi.org/10.1021/jp0615398
- 4. Seely G.R., Jensen R.G. // Spectrochim. Acta. 1965. V. 21. № 10. P. 1835; https://doi.org/10.1016/0371-1951 (65)80095-9
- 5. Houssier C., Sauer K. // J. Amer. Chem. Soc. 1970. V. 92. № 4. P. 779; https://doi.org/10.1021/ja00707a007
- 6. Colbow K. // BBA – Bioenerg. 1973. V. 314. № 3. P. 320; https://doi.org/10.1016/0005-2728 (73)90116-3
- 7. Shipman L.L., Cotton T.M., Norris J.R., Katz J.J. // J. Amer. Chem. Soc. 1976. V. 98. № 25. P. 8222; https://doi.org/10.1021/ja00441a056
- 8. Linke M., Lauer A., Von Haimberger T. et al. // Ibid. 2008. V. 130. № 45. P. 14904; https://doi.org/10.1021/ja804096s
- 9. Shipman L.L. // Photochem. Photobiol. 1977. V. 26. № 3. P. 287; https://doi.org/10.1111/j.1751-1097.1977.tb07486.x
- 10. Knox R.S. // Ibid. 2003. V. 77. № 5. P. 492; https://doi.org/10.1562/0031-8655 (2003)0770492-daosoc2.0.co2
- 11. Oviedo M.B., Sánchez C.G. // J. Phys. Chem. A. 2011. V. 115. № 44. P. 12280; https://doi.org/10.1021/jp203826q
- 12. Khokhlov D., Belov A. // Biophys. Chem. 2019. V. 246. P. 16; https://doi.org/10.1016/j.bpc.2019.01.001
- 13. Birge R.R., Sullivan M.J., Kohler B.E. // J. Amer. Chem. Soc. 1976. V. 98. № 2. P. 358; https://doi.org/10.1021/ja00418a007
- 14. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T. // Gaussian 16. Rev. C. 01. Wallingford CT: Gaussian Inc., 2016.
- 15. Yanai T., Tew D.P., Handy N.C. // Chem. Phys. Lett. 2004. V. 393. № 1–3. P. 51; https://doi.org/10.1016/j.cplett.2004.06.011
- 16. Henderson T.M., Izmaylov A.F., Scalmani G., Scuseria G.E. // J. Chem. Phys. 2009. V. 131. № 4. P. 044108; https://doi.org/10.1063/1.3185673
- 17. Tomasi J., Mennucci B., Cammi R. // Chem. Rev. 2005. V. 105. № 8. P. 2999; https://doi.org/10.1021/cr9904009
- 18. Marenich A. V., Cramer C.J., Truhlar D.G. // J. Phys. Chem. B. 2009. V. 113. № 18. P. 6378; https://doi.org/10.1021/jp810292n
- 19. Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. № 5. P. 580; https://doi.org/10.1002/jcc.22885
- 20. Черепанов Д.А., Милановский Г.Е., Надточенко В.А., Семёнов А.Ю. // Хим. физика. 2023. Т. 42. № 5.
- 21. Chako N.Q. // J. Chem. Phys. 1934. V. 2. № 10. P. 644; https://doi.org/10.1063/1.1749368
- 22. Lorentz H.A. The Theory of Electrons. 2nd edn. Leipzig, New York: Dover, 1952.
- 23. Onsagbr L. // J. Amer. Chem. Soc. 1936. V. 58. № 8. P. 1486; https://doi.org/10.1021/ja01299a050
- 24. Fröhlich H. Theory of Dielectrics: Dielectric Constant and Dielectric Loss. Oxford: Clarendon Press, 1949.
- 25. Böttcher C.J.F., van Belle O.C., Bordewijk P., Rip A. Theory of electric polarization. 2nd ed. V. 1. Dielectrics in static fields. Amsterdam, New York: Elsevier Scientific Pub. Co, 1974.
- 26. Mulliken R.S., Rieke C.A. // Rep. Prog. Phys. 1941. V. 8. № 1. P. 231; https://doi.org/10.1088/0034-4885/8/1/312
- 27. Pickett L.W., Paddock E., Sackter E. // J. Amer. Chem. Soc. 1941. V. 63. № 4. P. 1073; https://doi.org/10.1021/JA01849A051/ASSET/JA01849-A051.FP.PNG_V03
- 28. Jacobs L.E., Platt J.R. // J. Chem. Phys. 1948. V. 16. № 12. P. 1137; https://doi.org/10.1063/1.1746745
- 29. Neporent B.S., Bakhshiev N.G. // Opt. Spectrosc. 1958. V. 5. № 634. P. 1954.
- 30. Moffitt W., Moscownz A. // J. Chem. Phys. 1959. V. 30. № 3. P. 648; https://doi.org/10.1063/1.1730025
- 31. Bakhshiev N.G., Girin O.P., Libov V.S. // Opt. Spectrosc. 1963. V. 14. P. 255.
- 32. Lorenz L. // Ann. Phys. 1880. V. 247. № 9. P. 70; https://doi.org/10.1002/andp.18802470905
- 33. Pacak P. // J. Solut. Chem. 1987. V. 16. № 1. P. 71; https://doi.org/10.1007/BF00647016
- 34. Bakhshiev N.G. // Opt. Spectrosc. 1958. V. 5. № 646. P. 1954.
- 35. Schuyer J. // Recl. des Trav. Chim. des Pays-Bas. 1953. V. 72. № 11. P. 933; https://doi.org/10.1002/recl.19530721104
- 36. Bakhshiev N.G., Girin O.P., Libov V.S. // Opt. Spectrosc. 1963. V. 14. P. 395.
- 37. Liptay W. // Z. Naturforschg. A. 1966. V. 21. № 10. P. 1605; https://doi.org/10.1515/zna-1966-1010
- 38. Weigang O.E. // J. Chem. Phys. 1964. V. 41. № 5. P. 1435; https://doi.org/10.1063/1.1726086
- 39. Хохлова С.С., Михайлова В.А., Иванов А.И. // Хим. физика. 2007. Т. 26. № 7. С. 27.
- 40. Karakas A., Ceylan Y., Karakaya M. et al. // Open Chem. 2018. V. 16. № 1. P. 1242; https://doi.org/10.1515/chem-2018-0134
- 41. Knox R.S., van Amerongen H. // J. Phys. Chem. B. 2002. V. 106. № 20. P. 5289; https://doi.org/10.1021/jp013927+
- 42. Knox R.S., Spring B.Q. // Photochem. Photobiol. 2003. V. 77. № 5. P. 497; https://doi.org/10.1562/0031-8655 (2003)0770497-dsitc2.0.co2
- 43. Adolphs J., Müh F., Madjet M.E.A. et al. // J. Amer. Chem. Soc. 2010. V. 132. № 10. P. 3331; https://doi.org/10.1021/ja9072222
- 44. Novoderezhkin V.I., Palacios M.A., Van Amerongen H., Van Grondelle R. // J. Phys. Chem. B. 2005. V. 109. № 20. P. 10493; https://doi.org/10.1021/jp044082f
- 45. Adolphs J., Müh F., Madjet M.E.A., Renger T. // Photosynth. Res. 2008. V. 95. № 2–3. P. 197; https://doi.org/10.1007/s11120-007-9248-z
- 46. Krawczyk S. // BBA – Bioenerg. 1991. V. 1056. № 1. P. 64; https://doi.org/10.1016/S0005-2728 (05)80073-8
- 47. Altmann R.B., Haarer D., Renge I. // Chem. Phys. Lett. 1993. V. 216. № 3–6. P. 281; https://doi.org/10.1016/0009-2614 (93)90095-I
- 48. Хохлова С.С., Михайлова В.А., Иванов А.И. // ЖФХ. 2008. Т. 82. № 6. С. 1161.
- 49. Van Manen H.J., Verkuijlen P., Wittendorp P. et al. // Biophys. J. 2008. V. 94. № 8. P. L67; https://doi.org/10.1529/biophysj.107.127837
- 50. Vörös J. // Biophys. J. 2004. V. 87. № 1. P. 553; https://doi.org/10.1529/biophysj.103.030072
- 51. Zölls S., Gregoritza M., Tantipolphan R. et al. // J. Pharm. Sci. 2013. V. 102. № 5. P. 1434; https://doi.org/10.1002/jps.23479
- 52. Byrdin M., Jordan P., Krauss N. et al. // Biophys. J. 2002. V. 83. № 1. P. 433; https://doi.org/10.1016/S0006-3495 (02)75181-3
- 53. Yang M., Damjanović A., Vaswani H.M., Fleming G.R. // Ibid. 2003. V. 85. № 1. P. 140; https://doi.org/10.1016/S0006-3495 (03)74461-0
- 54. Akhtar P., Caspy I., Nowakowski P.J. et al. // J. Amer. Chem. Soc. 2021. V. 143. № 36. P. 14601; https://doi.org/10.1021/jacs.1c05010
- 55. Kimura A., Kitoh-Nishioka H., Aota T., et al. // J. Phys. Chem. B. 2022. V. 126. № 22. P. 4009; https://doi.org/10.1021/acs.jpcb.2c00869
- 56. Philipson K.D., Cheng Tsai S., Sauer K. // J. Phys. Chem. 1971. V. 75. № 10. P. 1440; https://doi.org/10.1021/J100680A013/ASSET/J100-680A013.FP.PNG_V03