RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Specific Features of the Decay Kinetics of an Excited Singlet State Into a Pair of Triplet Excitons In Rubrene Crystals

PII
10.31857/S0207401X23070178-1
DOI
10.31857/S0207401X23070178
Publication type
Status
Published
Authors
Volume/ Edition
Volume 42 / Issue number 7
Pages
86-94
Abstract
In this study, the specific features of the kinetics of singlet fission (SF)—i.e., spontaneous splitting of the excited singlet state into a pair of triplet (T) excitons (TT-pair)—in anisotropic molecular crystals are analyzed in detail. These features are known to be primarily determined by the TT-annihilation of the created TT-pairs (migrating in the crystals). In our analysis, the kinetics of annihilation-affected SF processes is described in the two-state model (TSM), in which the interaction of migrating T-excitons is associated with transitions between two kinetic states of TT-pairs: [TT]-state of coupled TT-pairs and [T+T]-state of freely migrating T-excitons. The TSM makes it possible to represent the effects of migration and interaction on SF-kinetics in terms of the lattice Green’s functions, for which the analytical formulas are obtained in this study. The TSM is applied to the analysis of SF-kinetics in the rubrene single crystals recently measured in a wide time range. The analysis provides detailed information on some characteristic kinetic properties of SF processes in anisotropic crystals. It is shown, for example, that the formation of the [TT]-state in the SF process results in some distortion of the shape of the SF kinetic dependence at short times (of the order of the primary-stage time of SF kinetics). Is also demonstrated that the anisotropy of T-exciton migration manifests itself in some characteristic features of SF kinetics at long times.
Keywords
распад синглета триплет-триплетная аннигиляция.
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Smith M.B., Michl J. // Annu. Rev. Phys. Chem. 2013. V. 64. P. 361.
  2. 2. Casanova D. // Chem. Rev. 2018. V. 118. P. 7164; https://doi.org/10.1021/acs.chemrev.7b00601
  3. 3. Miyata K., Conrad-Burton F. S., Geyer F. L. et al. // Ibid. 2019. V. 84. P. 4261; https://doi.org/10.1021/acs.chemrev.8b00572
  4. 4. Merrifield R.E. // J. Chem. Phys. 1968. V. 48. P. 4318; https://doi.org/10.1063/1.1669777
  5. 5. Suna A. // Phys. Rev. B. 1970. V. 1. P. 1716; https://doi.org/10.1103/PhysRevB.1.1716
  6. 6. Shushin A.I. // J. Chem. Phys. 2022. V. 156. P. 074703; https://doi.org/10.1063/5.0078158
  7. 7. Tarasov V.V., Zoriniants G.E., Shushin A.I. et al. // Chem. Phys. Lett. 1997. V. 267. P. 58; https://doi.org/10.1016/S0009-2614 (97)00056-0
  8. 8. Ветчинкин А.С., Уманский С.Я., Чайкина Ю.А. и др. // Хим. физика. 2022. Т. 41. № 9. С. 72; https://doi.org/10.31857/S0207401X22090102
  9. 9. Ryansnyanskiy A., Biaggio I. // Phys. Rev. B. 2011. V. 84. P. 193203; https://doi.org/10.1103/PhysRevB.84.193203
  10. 10. Barhoumi T., Monge J.L., Mejatty M. et al. // Eur. Phys. J. B. 2007. V. 59. P. 167.
  11. 11. Piland G.B., Burdett J.J., Kurunthu D. et al. // J. Phys. Chem. 2013. V. 117. P. 1224; https://doi.org/10.1021/jp309286v
  12. 12. Шушин А.И. // Хим. физика. 2017. Т. 36. № 11. С. 17; https://doi.org/10.7868/S0207401X17110085
  13. 13. Pilland G.B., Burdett J.J., Dillon R.J. et al. // J. Phys. Chem. Lett. 2014. V. 5. P. 2312; https://doi.org/10.1021/jz500676c
  14. 14. Steiner U.E., Ulrich T. // Chem. Rev. 1989. V. 89. P. 514; https://doi.org/10.1021/cr00091a003
  15. 15. Blum K. Density Matrix Theory and Applications. N.Y.: Plenum Press, 1981.
  16. 16. Shushin A.I. // Chem. Phys. Lett. 1985. V. 118. P. 197; https://doi.org/10.1016/0009-2614 (85)85297-0
  17. 17. Shushin A.I. // J. Chem. Phys. 1991. V. 95. P. 3657; https://doi.org/10.1063/1.460817
  18. 18. Shushin A.I. // Ibid. 1992. V. 97. P. 1954; https://doi.org/10.1063/1.463132
  19. 19. Wolf E.A., Biaggio I. // Phys. Rev. B. 2021. V. 103. P. L201201; https://doi.org/10.1103/PhysRevB.103.L201201
  20. 20. Shushin A.I. // J. Chem. Phys. 2019. V. 151. P. 034103; https://doi.org/10.1063/1.5099667
  21. 21. Shushin A.I. // Chem. Phys. Lett. 2017. V. 678. P. 283; https://doi.org/10.1016/j.cplett.2017.04.068
  22. 22. Лаврентьев M.A., Шабат Б.В. Методы теории функций комплексного переменного. М.: Наука, 1973.
  23. 23. Buchachenko A.L. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 9; https://doi.org/10.1134/S1990793122010031
  24. 24. Buchachenko A.L., Kuznetsov D.A. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 1; https://doi.org/10.1134/S1990793121010024
  25. 25. Лундин А.А., Зобов В.Е. // Хим. физика. 2021. Т. 40. № 9. С. 41; https://doi.org/10.31857/S0207401X21090077
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library