RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Investigation of Macrokinetic Parameters of Combustion of (Ti + C)-Based Powder and Granular Mixtures: Elucidation of the Negative Activation Energy Paradox

PII
10.31857/S0207401X23090108-1
DOI
10.31857/S0207401X23090108
Publication type
Status
Published
Authors
Volume/ Edition
Volume 42 / Issue number 9
Pages
11-19
Abstract
For the first time, a comparative study is carried out of the macrokinetic parameters of the combustion of powder and granular mixtures of Ti + C when diluted by metal powders. The burning rates of powder mixtures (Ti + C) + 20% Me (Me = Ni, Cu) turned out to be higher than those of Ti + C mixtures, despite the lower temperature of combustion. This contradicts the theoretical models of the dependence of the combustion rate on the maximum temperature in condensed heterogeneous media. When diluting a Ti + C mixture with Ti or TiC powders, such a contradiction does not occur. The data obtained are explained using the convective-conductive model of combustion by the strong influence of the impurity gas release from titanium ahead of the combustion front. The values of the time of the transition of combustion between the granules and the burning rate of the material inside the granules, as well as a quantitative assessment of the decelerating effect of impurity gases in powder mixtures, are obtained using the values of combustion rates of the mixtures with granules of different sizes. For the (Ti + C) + 20% Ni mixture, the ignition time of the granules turned out to be less than 1 ms. The efficiency of the combustion transition between granules in the presence of a hot Ni melt is explained by comparing the combustion parameters of granular mixtures of Ti + C diluted with other metal powders and titanium carbide.
Keywords
макрокинетика сомораспространяющийся высокотемпературный синтез порошковые смеси гранулированные смеси примесное газовыделение.
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. Костин С.В., Кришеник П.М., Рогачев С.А // Хим. физика. 2021. Т. 40. № 1. С. 24; https://doi.org/10.31857/S0207401X21010076
  2. 2. Турсынбек С., Зарко В.Е., Глотов О.Г. и др. // Хим. физика. 2020. Т. 39. № 5. С. 16; https://doi.org/10.31857/S0207401X20050118
  3. 3. Силяков С.Л., Юхвид В.И., Хоменко Н.Ю. и др. // Хим. физика. 2020. Т. 39. № 9. С. 94; https://doi.org/10.31857/S0207401X20090113
  4. 4. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2020. Т. 39. № 9. С. 39; https://doi.org/10.31857/S0207401X20090058
  5. 5. Мержанов А.Г., Рогачев А.С., Умаров Л.М., Кирьяков Н.В. // Физика горения и взрыва. 1997. Т. 33. № 4. С. 55.
  6. 6. Щербаков В.А., Сычев А.Е., Штейнберг А.С. // Физика горения и взрыва. 1986. Т. 22. № 4. С. 55.
  7. 7. Мукасьян А.С., Шугаев В.А., Кирьяков Р.М. // Физика горения и взрыва. 1993. Т. 2. № 1. С. 9.
  8. 8. Камынина О.К., Рогачев А.С., Умаров Л.М. // Физика горения и взрыва. 2003. Т. 39. № 5. С. 69.
  9. 9. Сеплярский Б.С., Вадченко С.Г. // Докл. АН. 2004. Т. 398. № 1. С. 72.
  10. 10. Алдушин А.П., Мартемьянова Т.М., Мержанов А.Г. и др. // Физика горения и взрыва. 1972. Т. 8. № 2. С. 202.
  11. 11. Dunmead S.D., Readey D.W., Semler C.E. // J. Amer. Ceram. Soc. 1989. V. 72. P. 2318.
  12. 12. Varma A., Rogachev A.S., Mukasyan A.S., Hwang S. // Adv. Chem. Eng. 1998. V. 24. P. 79.
  13. 13. Rogachev A.S. // Intern. J. Self-Propag. High-Temp. Synth. 1997. V. 6. № 2. P. 215.
  14. 14. Сеплярский Б.С. // Докл. АН. 2004. Т. 396. № 5. С. 640.
  15. 15. Rubtsov N.M., Seplyarskii B.S., Alymov M.I. Ignition and Wave Processes in Combustion of Solids. Springer International Publishing AG, Cham, Switzerland, 2017; https://doi.org/10.1007/978-3-319-56508-8_4
  16. 16. Seplyarskii B.S., Kochetkov R.A. // Intern. J. Self-Propag. High-Temp. Synth. 2017. V. 26. № 2. P. 134.
  17. 17. Сеплярский Б.С., Кочетков Р.А., Лисина Т.Г., Абзалов Н.И. // Физика горения и взрыва. 2021. Т. 57. № 1. С. 65; https://doi.org/10.15372/FGV20210107
  18. 18. Nikogosov V.N., Nersesyan G.A., Shcherbakov V.A., Kharatyan S.L., Shteinberg A.S. // Intern. J. Self-Propag. High-Temp. Synth. 1999. V. 8. № 3. P. 321.
  19. 19. Seplyarskii B.S., Kochetkov R.A., Lisina T.G., Rubtsov N.M., Abzalov N.I. // Combust. and Flame. 2022. V. 236. P. 111811; https://doi.org/10.1016/j.combustflame.2021.111811
  20. 20. Зенин А.А., Мержанов А.Г., Нерсисян Г.А. // Физика горения и взрыва. 1981. Т. 17. № 1. С. 79.
  21. 21. Slezak T., Zmywaczyk J., Koniorczyk P. // AIP Conf. Proc. 2019. V. 2170. Issue 1. 020019; https://doi.org/10.1063/1.5132738
  22. 22. Корольченко И.А., Казаков А.В., Кухтин А.С., Крылов В.Л. // Пожаровзрывобезопасность веществ и материалов. 2004. Т. 13. № 4. С. 36.
  23. 23. Хусид Б.М., Хина Б.Б., Баштовая Е.А. // Физика горения и взрыва. 1991. Т. 6. № 6. С. 64.
  24. 24. Зиновьев В.Е. Теплофизические свойства металлов при высоких температурах. М.: Металлургия, 1989.
  25. 25. Мержанов А.Г., Рогачев А.С., Мукасьян А.С., Хусид Б.И. // Физика горения и взрыва. 1990. Т. 26. № 1. С. 110.
  26. 26. Bellen P., Kumar K.C.H., Wollants P. // Intern. J. Mater. Res. 1996. V. 87. № 12. P. 972; https://doi.org/10.1515/ijmr-1996-871207
  27. 27. Kumar K.C.H., Ansara I., Wollants P., Delaey L. // Ibid. № 8. P. 666; https://doi.org/10.1515/ijmr-1996-870811
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library