RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

ФРАГМЕНТАЦИЯ МОЛЕКУЛ АДЕНИНА ПРИ ВЗАИМОДЕЙСТВИИ С ИОНАМИ

PII
10.31857/S0207401X23100035-1
DOI
10.31857/S0207401X23100035
Publication type
Status
Published
Authors
Volume/ Edition
Volume 42 / Issue number 10
Pages
16-25
Abstract
The mechanism of the fragmentation processes of adenine ions (Ade, C5H5N5) occurring during the interaction of molecules in the gas phase with ions energies of the order of keV is studied. The relative cross sections of various elementary processes occurring in single collisions of ions with molecules are measured. The channels of the fragmentation processes of singly charged Ade+ ions are experimentally studied. The complete active space self-consistent field (CASSCF) method is used to calculate the geometry of the molecules and singly charged Ade+ ions, as well as the reaction paths of the main experimentally observed fragmentation channels of these ions.
Keywords
захват электронов аденин фрагментация молекулярных ионов масс-спектрометрия метод CASSCF.
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
2

References

  1. 1. Lin J., Yu C., Peng S. I. Akiyama et al. // J. Amer. Chem. Soc. 1980. V. 102. P. 4627.
  2. 2. Urano S., Yang X., LeBreton P.R. // J. Mol. Struct. 1989. V. 214. P. 315.
  3. 3. Jochims H.-W., Schwell M., Baumgärtel H. et al. // Chem. Phys. 2005. V. 314. № 1–3. P. 263; https://doi.org/10.1016/j.chemphys.2005.03.008
  4. 4. Pilling S., Lago A.F., Coutinho L.H. et al. // Rapid Commun. Mass Spectrom. 2007. V. 21. № 22. P. 3646; https://doi.org/10.1002/rcm.3259
  5. 5. Trofimov A.B., Schirmer J., Kobychev V.B. et al. // J. Phys. B: At. Mol. Opt. Phys. 2006. V. 39. № 2. P. 305; https://doi.org/10.1088/0953-4075/39/2/007
  6. 6. Sethi S.K., Gupta S.P., Jenkins E.E.J. et al. // Amer. Chem. Soc. 1982. V. 104. № 12. P. 3349.
  7. 7. Minaev B.F., Shafranyosh M.I., Svida Yu.Yu. et al. // J. Chem. Phys. 2014. V. 140. № 17. P. 175101; https://doi.org/10.1063/1.4871881
  8. 8. Dawley M.M., Tanze K., Cantrell P. et al. // Phys. Chem. Chem. Phys. 2014. V. 16. № 45. P. 25039; doi.org/https://doi.org/10.1039/C4CP03452J
  9. 9. Rahman M.A., Krishnakumar E. // J. Chem. Phys. 2016. V. 144. № 16. P. 161102; https://doi.org/10.1063/1.4948412
  10. 10. Van der Burgt P.J.M., Finnegan S., Eden S. // Eur. Phys. J. D. 2015. V. 69. P. 173; https://doi.org/10.1140/epjd/e2015-60200-y
  11. 11. Дьяков Ю.А., Пузанков А.А., Адамсон С.О. и др. // Хим. физика. 2020. Т. 39. № 10. С. 3; https://doi.org/10.31857/S0207401X20100040
  12. 12. Bernard J., Brédy R., Chen L. et al. // Nucl. Instrum. Methods. Phys. Res. B. 2006. V. 245. № 1. P. 103; https://doi.org/10.1016/j.nimb.2005.11.086
  13. 13. Alvarado F., Bari S., Hoekstra R., Schlathölter T. et al. // J. Chem. Phys. 2007. V. 127. № 3. P. 034301.
  14. 14. Martin S., Brédy R., Allouche A.R. et al. // Phys. Rev. A. 2008. V. 77. P. 062513; https://doi.org/10.1103/PhysRevA.77.062513
  15. 15. Montagne G., Bernard J., Martin S. et al. // J. Phys. B: At. Mol. Opt. Ph\ys. 2009. V. 42. № 7. 075204; https://doi.org/10.1088/0953-4075/42/7/075204
  16. 16. Tabet J., Eden S., Feil S. et al. // Intern. J. Mass Spectrom. 2010. V. 292. № 1. P. 53; https://doi.org/10.1016/j.ijms.2010.03.002
  17. 17. Афросимов В.В., Басалаев А.А., Морозов Ю.Г. и др. // ЖТФ. 2012. Т. 82. № 5. С. 16.
  18. 18. De Vries M.S., Hobza P. // Annu. Rev. Phys. Chem. 2007. V. 58. P. 585; https://doi.org/10.1146/annurev.physchem.57.032905.104722
  19. 19. Fuss M., Muñoz A., Oller J.C. et al. // Phys. Rev. A.: At. Mol. Opt. Phys. 2009. V. 80. № 5. 052709; https://doi.org/10.1103/PhysRevA.80.052709
  20. 20. Басалаев А.А., Кузьмичев В.В., Панов М.Н. и др. // ЖТФ. 2022. Т. 92. № 7. С. 978; https://doi.org/10.21883/JTF.2022.07.52654.309-21
  21. 21. Басалаев А.А., Кузьмичев В.В., Панов М.Н. и др. // Письма в ЖТФ. 2022. Т. 48. № 17. С. 13; https://doi.org/10.21883/PJTF.2022.17.53280.19238
  22. 22. Basalaev A.A., Kuz’michev V.V., Panov M.N. et al. // Radiat. Phys. Chem. 2022. V. 193. № 4. P. 109984; https://doi.org/10.1016/j.radphyschem.2022.109984
  23. 23. Barca G.M.J., Bertoni C., Carrington L. et al. // J. Chem. Phys. 2020. V. 152. № 15. Article 154102.
  24. 24. Дьяков Ю.А., Адамсон С.О., Ванг П.К. и др. // Хим. физика. 2021. Т. 40. № 10. С. 22; https://doi.org/10.31857/S0207401X21100034
  25. 25. Дьяков Ю.А., Адамсон С.О., Ванг П.К. и др. // Хим. физика. 2022. Т. 41. № 6. С. 85; https://doi.org/10.31857/S0207401X22060036
  26. 26. Храпковский Г.М., Аристов И.В., Егорова Д.Л. и др. // Хим. физика. 2022. Т. 41. № 9. С. 19; https://doi.org/10.31857/S0207401X22070068
  27. 27. Schmidt M.W., Gordon M.S. // Annu. Rev. Phys. Chem. 1998. V. 49. P. 233.
  28. 28. Bode B.M., Gordon M.S. // J. Mol. Graph. Model. 1998. V. 16. № 3. P. 133.
  29. 29. Improta R., Scalmani G., Barone V. // Intern. J. Mass Spectrom. 2000. V. 201. P. 321.
  30. 30. NIST Computational Chemistry Comparison and Benchmark Database. NIST Standard Reference Database Number 101. 2022; https://doi.org/10.18434/T47C7Z
  31. 31. Басалаев А.А, Панов М.Н. // ЖТФ. 2019. Т. 89. № 3. С. 342; https://doi.org/10.21883/JTF.2019.03.47166.299-18
  32. 32. Mass Spectrum Interpreter Version 2; https://chemdata.nist.gov/mass-spc/interpreter/
  33. 33. NIST Chemistry WebBook. NIST Standard Reference Database Number 69; https://doi.org/10.18434/T4D303
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library