- PII
- 10.31857/S0207401X2311002X-1
- DOI
- 10.31857/S0207401X2311002X
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 42 / Issue number 11
- Pages
- 79-88
- Abstract
- Molybdenum-containing composite nanomaterials are synthesized by the thermal decomposition of molybdenum hexacarbonyl in a solution-melt of polyethylene in mineral oil. The concentration of a metalcontaining filler in the composite materials varied from 1 to 20 wt %. A technique for preparing film samples for spectroscopic studies is developed, and the samples obtained are studied by UVI, IR, and Raman spectroscopy. It is found that additional absorption bands appear in the IR range, whose intensity depends on the concentration of molybdenum-containing nanoparticles in the composite materials. The spectral characteristics of Raman scattering show that all samples are characterized by the stretching of the C–C bond. In the visible light region, the spectrum of nanocomposites has a flat edge of its own absorption located in the region of wave numbers (18–31) × 103 cm–1.
- Keywords
- наноразмерный композит полиэтилен молибден наночастицы оптические спектры ИК-фурье-спектры КР-спектры.
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 3
References
- 1. Васильев А.А., Дзидзигури Э.Л., Ефимов М.Н. и др. // Хим. физика. 2021. Т. 40. № 6. С. 18.
- 2. Андреев Д.Е., Вдовин Ю.С., Юхвид В.И. и др. // Хим. физика. 2020. Т. 39. № 3. С. 24.
- 3. Луканина Ю.К., Колесникова Н.Н., Попов А.А. и др. // Хим. физика. 2019. Т. 38. № 4. С. 69.
- 4. Герасимов Г.Н., Громов В.Ф., Иким М.И. и др. // Хим. физика. 2019. Т. 38. № 10. С. 41.
- 5. Жуков А.М., Солодилов В.И., Третьяков И.В. и др. // Хим. физика. 2022. Т. 41. № 9. С. 64.
- 6. Rogge S.M., Bavykina A., Hajek J. et al. // Chem. Soc. Rev. 2017. V. 46. № 11. P. 3134.
- 7. Sensors: Proceedings of the Fourth National Conference on Sensors, 2018, Italy; https://doi.org/10.1007/978-3-030-04324-7
- 8. Zhang W., Mou Z., Wang Y. et al. // Mater. Sci. and Eng., C. 2019. V. 97. P. 486.
- 9. Govindasamy M., Rajaji U., Chen S.M. et al. // Anal. Chim. Acta. 2018. V. 1030. P. 52.
- 10. Adamska K., Okal J., Tylus W. // Applied Catalysis B: Environmental. 2019. V. 246. P. 180.
- 11. Boufaden N., Pawelec B., Fierro J.L.G. et al. // Mater. Chem. Phys. 2018. V. 209. P. 188.
- 12. Rabalais J.W., Colton R.J., Guzman A.M. // Chemical Physics Letters. 1974. V. 29. P. 131.
- 13. Yao J., Hashimoto K., Fujishima A. // Nature. 1992. V. 355. P. 624.
- 14. Yang Y.A., Cao Y.W., Loo B.H., Yao J.N. // J. Phys. Chem. B. 1998. V. 102. № 47. P. 9392.
- 15. Jalalian M., Farzaneh F., Foruzin L.J. // J. Cluster. Sci. 2015. V. 26. № 3. P. 703.
- 16. Rathnasamy R., Thangamuthu R., Alagan V. // Res. Chem. Intermed. 2018. V. 44. P. 1647.
- 17. Xu Y., Xie L., Zhang Y. et al. // Electron. Mater. Lett. 2013. V. 9. P. 693.
- 18. Buzanovskii V.A. // Ref. J. Chem. 2018. V. 8. № 3. P. 243.
- 19. Kim W.S., Kim H.C., Hong S.H. // J. Nanopart. Res. 2010. V. 12. P. 1889.
- 20. Ferroni M., Guidi V., Martinelli G. et al. // Sens. Actuators, B. Chemical. 1998. V. 48. № 1. P. 285.
- 21. Ferguson I.F., Ainscough J.B., Morse D., Miller A.W. // Nature. 1964. V. 202. № 4939. P. 1327.
- 22. Таратанов Н.А., Юрков Г.Ю., Фионов А.С. и др. // РЭ. 2009. Т. 54. № 8. С. 986.
- 23. Фионов А.С., Юрков Г.Ю., Потапов А.А. и др. // Нелинейный мир. 2008. Т. 6. № 1. С. 37.
- 24. Юрков Г.Ю., Devlin E., Панчук В.В. и др. // ФТТ. 2013. Т. 55. № 9. С. 1830.
- 25. Таратанов Н.А., Козинкин А.В., Юрков Г.Ю. и др. // Перспективные матер. 2009. № 5. С. 55.
- 26. Yurkov G.Yu., Pankratov D.A., Koksharov Yu.A. et al. // Ceram. Intern. 2022. V. 48. № 24. P. 37410.