RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Dielectric Properties of Composites Based on Ethylene Vinyl Acetate Filled with a Hollandite-Like Ceramic Material K1.5Co0.75Ti7.25O16

PII
10.31857/S0207401X23110092-1
DOI
10.31857/S0207401X23110092
Publication type
Status
Published
Authors
Volume/ Edition
Volume 42 / Issue number 11
Pages
3-8
Abstract
Polymer-matrix composites based on ethylene vinyl acetate (EVA) and KxCoyTi8 – yO16 solid solution with a hollandite-like structure (KCoTO(H)) are obtained and studied as promising materials for components of electronic devices. The filler is synthesized by modifying X-ray amorphous potassium polytitanate (PPT) K2O·nTiO2 (n = 4.3) in a CoSO4·7H2O solution under alkaline conditions, followed by thermal treatment at 900°C. The structure of the synthesized material and the morphology of particles are studied by X-ray phase analysis (XPA) and scanning electron microscopy (SEM), respectively. KCoTO(H) is introduced in the EVA polymer matrix by mixing a preliminarily prepared polymer solution and a dispersion of filler powder in an appropriate solvent in amounts of 10, 20, 30, 40, and 50 vol %. The frequency behavior of the permittivity, dielectric loss tangent, and conductivity of the obtained composites is studied by impedance spectroscopy. It is established that an increase in the KCoTO(H) content in the composite contributes to the growth of all the studied dielectric characteristics of a relatively pure EVA polymer matrix in the entire frequency range of 0.1 kHz–1 MHz (the maximum values are noted at a 50 vol % of the filler and f = 102 Hz: ε = 518, tanδ = 4, and σ = 1.35 S/cm).
Keywords
полимерные композиты голландитоподобная структура титанат калия допирование кобальтом диэлектрические свойства.
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
2

References

  1. 1. Wu H., Zhuo F., Qiao H. et al. // Energy Environ. Mater. 2022. V. 5. № 2. P. 486.
  2. 2. Esmaili P., Azdast T., Doniavi A. // J. Polym. Res. 2022. V. 29. № 11. Article 465.
  3. 3. Fan B., Zhou M., Zhang C. et al. // Prog. Polym. Sci. 2019. V. 97. P. 101143.
  4. 4. Прусаков В.Е., Максимов Ю.В., Нищев К.Н. и др. // Хим. физика. 2018. Т. 37. № 1. С. 83.
  5. 5. Shanmugasundram H.P.P.V., Jayamani E., Soon K.H. // Renewable Sustainable Energy Rev. 2022. V. 157. Issue C.
  6. 6. Мясоедова В.В. // Хим. физика. 2019. Т. 38. № 9. С. 83.
  7. 7. Залепугин Д.Ю., Тилкунова Н.А., Чернышова И.В. // Сверхкритические флюиды: теория и практика. 2019. Т. 14. № 3. С. 11.
  8. 8. Raja J.G., Ahamed M.B., Hussain C.M. et al. // J. Mater. Sci. – Mater. Electron. 2022. V. 33. № 29. P. 22883.
  9. 9. Tan W.K., Matsubara Y., Yokoi A. et al. // Adv. Powder Technol. 2022. V. 33. № 4. P. 103528.
  10. 10. Kim G.H., Moon Y.I., Jung J.K. et al. // Polymers (Basel). 2022. V. 14. № 1. P. 155.
  11. 11. Hu C., Zhang H., Neate N. et al. // Ibid. № 18. P. 2583.
  12. 12. Liu Y., Li L., Shi J. et al. // Chem. Eng. J. 2019. V. 373. P. 642.
  13. 13. Симбирцева Г.В., Пивень Н.П., Бабенко С.Д. // Хим. физика. 2020. Т. 39. № 12. С. 60.
  14. 14. Жуков А.М., Солодилов В.И., Третьяков И.В., Буракова Е.А., Юрков Г.Ю. // Хим. физика. 2022. Т. 41. № 9. С. 64.
  15. 15. Васильев А.А., Дзидзигури Э.Л., Ефимов М.Н., Муратов Д.Г., Карпачева Г.П. // Хим. физика. 2021. Т. 40. № 6. С. 18.
  16. 16. Ou J., Chen Y., Zhao J. et al. // Polymers (Basel). 2022. V. 14. № 20. P. 4328.
  17. 17. Deng Q., Huang Y., Chen B. et al. // Colloids Surf. A. Physicochem. Eng. Asp. 2022. V. 632. P. 127763.
  18. 18. Bu Q., Hu J., Xiang B. et al. // Mater. Res. Bull. 2022. V. 147. P. 111632.
  19. 19. Zhou Y., Liu Q., Chen F. et al. // Ceram. Intern. 2021. V. 47. № 4. P. 5112.
  20. 20. Laarsi H.A., Fasquelle D., Tachafine A. // J. Electron. Mater. 2021. V. 50. № 3. P. 1132.
  21. 21. Besprozvannykh N.V., Sinel’shchikova O.Y., Morozov N.A. et al. // Russ. J. Appl. Chem. 2020. V. 93. № 8. P. 1132.
  22. 22. Morozov N.A., Sinel’shchikova O.Y., Besprozvannykh N.V. // Glass Phys. Chem. 2021. V. 47. № 6. P. 642.
  23. 23. Morozov N.A., Sinelshchikova O.Y., Besprozvannykh N.V. et al. // Ibid № 5. P. 481.
  24. 24. Tsyganov A., Vikulova M., Artyukhov D. et al. // Polymers (Basel). 2022. V. 14. № 19. P. 4010.
  25. 25. Vikulova M., Nikityuk T., Artyukhov D. et al. // Polymers (Basel). 2022. V. 14. № 3. P. 448.
  26. 26. Vikulova M., Tsyganov A., Bainyashev A. et al. // J. Appl. Polym. Sci. 2021. V. 138. № 40. P. 51 168.
  27. 27. Zhang R., Li L., Long S. et al. // Ceram. Intern. 2021. V. 47. № 15. P. 22 155.
  28. 28. Jena D.P., Mohanty B., Parida R.K. et al. // Mater. Chem. Phys. 2020. V. 243. P. 122 527.
  29. 29. Jena D.P., Anwar S., Parida R.K. et al. // J. Mater. Sci. – Mater. Electron. 2021. V. 32. № 6. P. 8081.
  30. 30. Mujal-Rosas R., Marin-Genesca M., Ballart-Prunell J. // Sci. Eng. Compos. Mater. 2015. V. 22. № 3. P. 231.
  31. 31. Das S., Achary P.G.R., Nayak N.C. et al. // Polym. Compos. 2016. V. 37. № 12. P. 3398.
  32. 32. Anithakumari P., Mandal B.P., Abdelhamid E. et al. // RSC Adv. 2016. V. 6. № 19. P. 16073.
  33. 33. Jin Y., Xia N., Gerhardt R.A. // Nano Energy. 2016. V. 30. P. 407.
  34. 34. Ou R., Gupta S., Parker C.A. et al. // J. Phys. Chem. B. 2006. V. 110. № 45. P. 22365.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library