RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Influence of Internal Microarchitecture on the Shape of Individual Implants Made from Vinylidene Fluoride Copolymer by 3D Printing with High-Temperature Crystallization

PII
10.31857/S0207401X23110109-1
DOI
10.31857/S0207401X23110109
Publication type
Status
Published
Authors
Volume/ Edition
Volume 42 / Issue number 11
Pages
9-15
Abstract
The healing potential of individual polymer implants for the reconstruction of extensive craniofacial defects after cancer resection is largely determined by the internal architecture of the implant. The architecture of an implant during polymer crystallization could affect the structure and shape of the implant at the micro and macro levels. In this study, the relationship between the internal architecture (triply periodic minimum surface structure (gyroid), cube, grid, and honeycomb) and shape changes of individual implants by 3D printing with a vinylidene fluoride-tetrafluoroethylene copolymer after crystallization is examined at a filling density of 70%. Using the method of differential scanning calorimetry, it is established that crystallization leads to the rearrangement of the crystalline structure of the implant into electrically active (ferroelectric) crystalline phases. Moreover, the type of internal architecture affects the change in the shape of the implant after crystallization. The results of the computed tomography show that structures with a triply periodic minimum surface (gyroid) provide the minimal deformation of the implant during crystallization, which makes such structures optimal for manufacturing implants for replacing bone defects in the zygomatic-orbital complex.
Keywords
3D-печать индивидуальные имплантаты сополимер винилиденфторид терафторэтилен.
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
6

References

  1. 1. Кульбакин Д.Е., Чойнзонов Е.Л., Буякова С.П. и др. // Голова и шея. 2018. V. 6. № 4. Р. 64. https://doi.org/10.25792/HN.2018.6.4.64-69
  2. 2. Жуков А.М., Солодилов В.И., Третьяков И.В., Буракова Е.А., Юрков Г.Ю. // Хим. физика. 2022. Т. 49. № 1. С. 64; https://doi.org/10.31857/S0207401X22090138
  3. 3. Иванова Т.А., Голубева Е.Н. // Хим. физика. 2022. Т. 41. № 6. С. 35; https://doi.org/10.31857/S0207401X2206005X
  4. 4. Тертышная Ю.В., Лобанов А.В., Хватов А.В. // Хим. физика. 2020. Т. 39. № 11. С. 52; https://doi.org/10.31857/S0207401X20110138
  5. 5. Badaraev A.D., Koniaeva A., Krikova S.A. et al. // Appl. Surf. Sci. 2020. V. 504; https://doi.org/10.1016/j.apsusc.2019.144068
  6. 6. Akimchenko I.O., Dubinenko G.E., Rutkowski S. et al. // Appl. Phys. Lett. 2021. V. 119. № 20; https://doi.org/10.1063/5.0070365
  7. 7. Kapat K., Shubhra Q.T.H., Zhou M. et al. // Adv. Funct. Mat. 2020. V. 30. № 44; https://doi.org/10.1002/adfm.201909045
  8. 8. Kochervinskii V.V. // Russ. Chem. Rev. 1996. V. 65. № 10. P. 936; https://doi.org/10.1070/RC1996v065n10ABEH000328
  9. 9. Li Y., Tang S., Pan M.W. et al. // Macromolecules. 2015. V. 48. № 23. P. 8565; https://doi.org/10.1021/acs.macromol.5b01895
  10. 10. Inoue M., Tada Y., Suganuma K. et al. // Polym. Degrad. Stabil. 2007. V. 92. P. 1833; https://doi.org/10.1016/j.polymdegradstab.2007.07.003
  11. 11. Lovinger A.J., Johnson G.E., Bair H.E. et al. // J. Appl. Phys. 1984. V. 56. P. 2412; https://doi.org/10.1063/1.334303
  12. 12. Murata Y. // Polym. J. 1987. V. 19. P. 337; https://doi.org/10.1295/polymj.19.337
  13. 13. Rammohan A.V., Lee T., Tan V.B.C. // Intern. J. Appl. Mech. 2015. V. 7. № 3; https://doi.org/10.1142/S1758825115500489
  14. 14. Dong Z., Zhao X. // Eng. Regen. 2021. V. 2. P. 154; https://doi.org/10.1016/j.engreg.2021.09.004
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library