- PII
- 10.31857/S0207401X23120063-1
- DOI
- 10.31857/S0207401X23120063
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 42 / Issue number 12
- Pages
- 86-94
- Abstract
- Some characteristic features of three scenarios for the occurrence and development of turbulence are presented: the Landau-Hopf scenario, the scenario of transition to turbulence on a strange attractor, and the scenario followed by the solutions of the multimoment hydrodynamics equations. The analysis of the presented characteristic features allows us to conclude that these scenarios can be used to interpret turbulence. It is shown that only one of the scenarios satisfactorily interprets the experimental data: the scenario followed by the solutions of the multimoment hydrodynamics equations supplemented with stochastic components. The Landau-Hopf scenario leads to a system that has lost stability in the wrong direction. The scenario of the transition to turbulence on a strange attractor correctly reproduces only the initial stage of the evolution of the liquid layer in the Bénard experiment, namely, heat transfer in the resting layer and convective shafts. Analysis of the behavior of solutions of the Lorentz model leaves no hope for the ability of this scenario to interpret turbulence
- Keywords
- турбулентность странный аттрактор многомоментная гидродинамика.
- Date of publication
- 01.12.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 53
References
- 1. Бетев А.С., Киверин А.Д., Медведев С.П., Яковенко И.С. // Хим. физика. 2020. Т. 39. № 12. С. 17.
- 2. Sagaut P. Large Eddy Simulation for Incompressible Flows. N.Y.: Springer, 2006.
- 3. Chekroun M.D., Simonnet E., Ghil M. // Physica D. 2011. V. 240. P. 1685.
- 4. Carvalho J., Rodrigues A.A. // Physica D. 2022. V. 434. № 133268.
- 5. Ruelle D., Takens F. // Commun. Math. Phys. 1971. V. 20. P. 167.
- 6. Lebed I.V. The foundations of multimoment hydrodynamics. Pt. 1. N.Y.: Nova Sci. Publ., 2018.
- 7. Kiselev A.Ph., Lebed I.V. // Chaos Solitons Fractals. 2021. V. 142. № 110491.
- 8. Киселев А.Ф., Лебедь И.В. // Хим. физика. 2021. Т. 40. № 1. С. 79.
- 9. Киселев А.Ф., Лебедь И.В. // Хим. физика. 2021. Т. 40. № 6. С. 80
- 10. Лебедь И.В., Уманский С.Я. // Хим. физика. 2007. Т. 26. № 1. С. 65.
- 11. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1986.
- 12. Natarajan R., Acrivos A. // J. Fluid Mech. 1993. V. 254. P. 323.
- 13. Tomboulides A.G., Orszag S.A. // Ibid. 2000. V. 416. P. 45.
- 14. Hannemann K., Oertel Jr.H. // Ibid. 1989. V. 199: P. 55.
- 15. Schuster H.G. Deterministic chaos. Weinheim: Physik Verlag, 1984.
- 16. Никурадзе Г. // Проблемы турбулентности / Под ред. Великанова М.А., Шейковского Н.Т. Л.–М.: ОНТИ, 1936. С. 75–150.
- 17. Chomaz J.M., Bonneton P., Hopfinger E.J. // J. Fluid Mech. 1993. V. 234. P.1.
- 18. Sakamoto H., Haniu H. // Ibid. 1995. V. 287. P. 151.
- 19. Лебедь И.В. // Хим. физика. 1997. Т. 16. № 7. С. 72.
- 20. Лебедь И.В. // Хим. физика. 2014. Т. 33. № 4. С. 1.
- 21. Лебедь И.В. // Хим. физика. 2022. Т. 41. № 1. С. 77.
- 22. Лебедь И.В. // Хим. физика. 2022. Т. 41. № 4. С. 81.
- 23. Лебедь И.В. // Хим. физика. 2023. Т. 42. № 9.