RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

The Effect of the Turbulence Coefficient on the Formation of a Turbulent Process: 2. Existing Scenarios for the Occurrence and Development of Turbulence

PII
10.31857/S0207401X23120063-1
DOI
10.31857/S0207401X23120063
Publication type
Status
Published
Authors
Volume/ Edition
Volume 42 / Issue number 12
Pages
86-94
Abstract
Some characteristic features of three scenarios for the occurrence and development of turbulence are presented: the Landau-Hopf scenario, the scenario of transition to turbulence on a strange attractor, and the scenario followed by the solutions of the multimoment hydrodynamics equations. The analysis of the presented characteristic features allows us to conclude that these scenarios can be used to interpret turbulence. It is shown that only one of the scenarios satisfactorily interprets the experimental data: the scenario followed by the solutions of the multimoment hydrodynamics equations supplemented with stochastic components. The Landau-Hopf scenario leads to a system that has lost stability in the wrong direction. The scenario of the transition to turbulence on a strange attractor correctly reproduces only the initial stage of the evolution of the liquid layer in the Bénard experiment, namely, heat transfer in the resting layer and convective shafts. Analysis of the behavior of solutions of the Lorentz model leaves no hope for the ability of this scenario to interpret turbulence
Keywords
турбулентность странный аттрактор многомоментная гидродинамика.
Date of publication
01.12.2023
Year of publication
2023
Number of purchasers
0
Views
53

References

  1. 1. Бетев А.С., Киверин А.Д., Медведев С.П., Яковенко И.С. // Хим. физика. 2020. Т. 39. № 12. С. 17.
  2. 2. Sagaut P. Large Eddy Simulation for Incompressible Flows. N.Y.: Springer, 2006.
  3. 3. Chekroun M.D., Simonnet E., Ghil M. // Physica D. 2011. V. 240. P. 1685.
  4. 4. Carvalho J., Rodrigues A.A. // Physica D. 2022. V. 434. № 133268.
  5. 5. Ruelle D., Takens F. // Commun. Math. Phys. 1971. V. 20. P. 167.
  6. 6. Lebed I.V. The foundations of multimoment hydrodynamics. Pt. 1. N.Y.: Nova Sci. Publ., 2018.
  7. 7. Kiselev A.Ph., Lebed I.V. // Chaos Solitons Fractals. 2021. V. 142. № 110491.
  8. 8. Киселев А.Ф., Лебедь И.В. // Хим. физика. 2021. Т. 40. № 1. С. 79.
  9. 9. Киселев А.Ф., Лебедь И.В. // Хим. физика. 2021. Т. 40. № 6. С. 80
  10. 10. Лебедь И.В., Уманский С.Я. // Хим. физика. 2007. Т. 26. № 1. С. 65.
  11. 11. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1986.
  12. 12. Natarajan R., Acrivos A. // J. Fluid Mech. 1993. V. 254. P. 323.
  13. 13. Tomboulides A.G., Orszag S.A. // Ibid. 2000. V. 416. P. 45.
  14. 14. Hannemann K., Oertel Jr.H. // Ibid. 1989. V. 199: P. 55.
  15. 15. Schuster H.G. Deterministic chaos. Weinheim: Physik Verlag, 1984.
  16. 16. Никурадзе Г. // Проблемы турбулентности / Под ред. Великанова М.А., Шейковского Н.Т. Л.–М.: ОНТИ, 1936. С. 75–150.
  17. 17. Chomaz J.M., Bonneton P., Hopfinger E.J. // J. Fluid Mech. 1993. V. 234. P.1.
  18. 18. Sakamoto H., Haniu H. // Ibid. 1995. V. 287. P. 151.
  19. 19. Лебедь И.В. // Хим. физика. 1997. Т. 16. № 7. С. 72.
  20. 20. Лебедь И.В. // Хим. физика. 2014. Т. 33. № 4. С. 1.
  21. 21. Лебедь И.В. // Хим. физика. 2022. Т. 41. № 1. С. 77.
  22. 22. Лебедь И.В. // Хим. физика. 2022. Т. 41. № 4. С. 81.
  23. 23. Лебедь И.В. // Хим. физика. 2023. Т. 42. № 9.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library