- PII
- 10.31857/S0207401X24010044-1
- DOI
- 10.31857/S0207401X24010044
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 1
- Pages
- 39-46
- Abstract
- The study of the oxidation of propane-ethylene mixtures by numerical kinetic modeling allowed us to establish that in the range of 400–600 oC with an increase in the conversion of propane with an increase in temperature, the selectivity of propylene formation passes through a maximum, the position of which depends on the concentration of ethylene in the initial mixture. The addition of ethylene to the initial mixture leads to a reduction in propane consumption and an increase in the selectivity of propylene formation. The conditions under which ethylene introduced into the initial mixture is not consumed during the process are determined, so formally it can be considered as a catalyst, and the process of propane oxidation as proceeding in a pseudo-catalytic regime.
- Keywords
- пропан пропилен этилен окисление кинетическое моделирование
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 3
References
- 1. Curran H.J. // Proc. Combust. Inst. 2019. V. 37. P. 57; https://doi.org/10.1016/j.proci.2018.06.054
- 2. Zador J., Taatjes C.A., Fernandes R.X. // Prog. in Energy Combust. Sci. 2011. V. 37. P. 371; https://doi.org/ 10.1016/j.pecs.2010.06.006
- 3. Arutyunov A.V., Troshin K.Ya., Nikitin A.V., Belyaev A.A., Arutyunov V.S. // J. Phys.: Conf. Ser. 2018. V. 1141. P. 012153; https://doi.org/10.1088/1742-6596/1141/ 1/012153
- 4. Petersen E.L., Kalitan D.M., Simmons S., Curran H.J., Simmie J.M. // Proc. Combust. Inst. 2007. V. 31. P. 447; https://doi.org/10.1016/j.proci.2006.08.034
- 5. Ramalingam A., Panigrahy S., Fenard Y., Curran H., Heufer K.A. // Combust. and Flame. 2021. V. 223. P. 361; https://doi.org/10.1016/j.combustflame.2020.10.020
- 6. Di He, Yusong Yu, Yucheng Kuang, Chaojun Wang // Appl. Sci. 2021. V. 11. P. 4107; https://doi.org/10.3390/app11094107
- 7. Sieradzka M., Rajca P., Zajemska M., Mlonka-Medrala A., Magdziarz A. // J. Cleaner Production. 2020. V. 248. 119277; https://doi.org/10.1016/j.jclepro. 2019.119277.
- 8. Schuh S., Frühhaber J., Lauer T., Winter F. // Energies. 2019. V. 12. P. 4396; https://doi.org/10.3390/en12224396
- 9. The San Diego Mechanism; https://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html
- 10. GRI-Mech 3.0 http://combustion.berkeley.edu/gri_mech/releases.html
- 11. AramcoMech 3.0 http://c3.nuigalway.ie/combustionchemistrycentre/mechanismdownloads/
- 12. NUIGMech1.1; http://c3.nuigalway.ie/combustionchemistrycentre/mechanismdownloads/
- 13. Starik A.M., Titova N.S., Yanovskii L.S. // Kinet. Catal. 1999. V. 40. P. 7.
- 14. Petrova M.V., Williams F.A. // Combust. Flame. 2006. V. 144. P. 526. https://doi.org/10.1016/J.COMBUSTFLAME.2005.07.016
- 15. Konnov A.A. // Proc. 28-th Sympos. (Intern.) on Combust. Edinburgh, 2000. Abstr. Symp. Pap. P. 317.
- 16. Koert D.N., Pitz W.J., Bozzelli J.W., Cernansky N.P. // Proc. 26th Sympos. (Intern.) on Pittsburg: The Combust. Inst., 1996. V. 26. P. 633; https://doi.org/10.1016/S0082-0784 (96)80270-0
- 17. Dagaut P., Cathonnet M., Boettner J.-C. // Int. J. Chem. Kinet. 1992. V. 24. № 9. P. 813; https://doi.org/10.1002/KIN.550240906
- 18. Арсентьев С.Д., Тавадян Л.А., Брюков М.Г. и др. // Хим. физика. 2022. Т. 41. № 11. С. 3.
- 19. Давтян А.Г., Манукян З.О., Арсентьев С.Д., Тавадян Л.А., Арутюнов В.С. // Хим. физика. 2023. Т. 42. № 9. С. 47.
- 20. Паланкоева А.С., Беляев А.А., Арутюнов В.С. // Хим. физика. 2022. Т. 41. № 6. С. 7; https://doi.org/ 10.31857/S0207401X22060097
- 21. Piehl J.A., Zyada A., Bravo L., Samimi-Abianeh O. // J. Combust. 2018. Article ID 8406754; https://doi.org/ 10.1155/2018/8406754
- 22. Erjiang Hu, Zhaohua Xu, Zhenhua Gao, Jiawei Xu, Zuo-hua Huang // Fuel. 2019. V. 256. 115933; https://doi.org/10.1016/j.fuel.2019.115933
- 23. Healy D., Kalitan D.M., Aul C.J., et al. // Energy Fuels. 2010. V. 24. P. 1521; https://doi.org/10.1021/ef9011005
- 24. Погосян Н.М., Погосян М.Дж., Арсентьев С.Д. и др. // Хим. физика, 2015. Т. 34. С. 29; https://doi:10.7868/S0207401X15040147
- 25. Погосян Н.М., Погосян М.Дж., Стрекова Л.Н., Тавадян Л.А., Арутюнов В.С. // Хим. физика. 2015. Т. 34. № 3. С. 35.
- 26. Погосян Н.М., Погосян М.Дж., Шаповалова О.В. и др. // Горение и взрыв. 2016. Т. 9. С. 83.
- 27. Погосян Н.М., Погосян М.Дж., Арсентьев С.Д. и др. // Нефтехимия. 2016. Т. 6. С. 612; https://doi.org/10.7868/S0028242116060174
- 28. Погосян Н.М., Погосян М.Дж., Арсентьев С.Д., и др. // Нефтехимия. 2020. Т. 60. С. 3; https://doi.org/10.31857/S002824212003017X
- 29. Погосян Н.М., Погосян М.Дж., Шаповалова О.В., Стрекова Л.Н., Арутюнов В.С. // Хим. физика. 2016. Т. 35. № 12. С. 30.
- 30. Алдошин С.М., Арутюнов В.С., Савченко В.И. и др. // Хим. физика 2021. Т. 40. № 5. С. 46; https://doi.org/ 10.31857/S0207401X21050034
- 31. ANSYS Academic Research CFD. Лицензия ФИЦ ХФ РАН идентифицируется по Customer ID:1080307.
- 32. Григорян Р.Р., Арсентьев С.Д., Манташян А.А. // Химия и хим. технология. ЕрГУ. 1983. № 2. C. 15.