RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Kinetic modeling of the effect of the conditions of conjugate oxidation of propane and ethylene on the yield of propylene

PII
10.31857/S0207401X24010044-1
DOI
10.31857/S0207401X24010044
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 1
Pages
39-46
Abstract
The study of the oxidation of propane-ethylene mixtures by numerical kinetic modeling allowed us to establish that in the range of 400–600 oC with an increase in the conversion of propane with an increase in temperature, the selectivity of propylene formation passes through a maximum, the position of which depends on the concentration of ethylene in the initial mixture. The addition of ethylene to the initial mixture leads to a reduction in propane consumption and an increase in the selectivity of propylene formation. The conditions under which ethylene introduced into the initial mixture is not consumed during the process are determined, so formally it can be considered as a catalyst, and the process of propane oxidation as proceeding in a pseudo-catalytic regime.
Keywords
пропан пропилен этилен окисление кинетическое моделирование
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Curran H.J. // Proc. Combust. Inst. 2019. V. 37. P. 57; https://doi.org/10.1016/j.proci.2018.06.054
  2. 2. Zador J., Taatjes C.A., Fernandes R.X. // Prog. in Energy Combust. Sci. 2011. V. 37. P. 371; https://doi.org/ 10.1016/j.pecs.2010.06.006
  3. 3. Arutyunov A.V., Troshin K.Ya., Nikitin A.V., Belyaev A.A., Arutyunov V.S. // J. Phys.: Conf. Ser. 2018. V. 1141. P. 012153; https://doi.org/10.1088/1742-6596/1141/ 1/012153
  4. 4. Petersen E.L., Kalitan D.M., Simmons S., Curran H.J., Simmie J.M. // Proc. Combust. Inst. 2007. V. 31. P. 447; https://doi.org/10.1016/j.proci.2006.08.034
  5. 5. Ramalingam A., Panigrahy S., Fenard Y., Curran H., Heufer K.A. // Combust. and Flame. 2021. V. 223. P. 361; https://doi.org/10.1016/j.combustflame.2020.10.020
  6. 6. Di He, Yusong Yu, Yucheng Kuang, Chaojun Wang // Appl. Sci. 2021. V. 11. P. 4107; https://doi.org/10.3390/app11094107
  7. 7. Sieradzka M., Rajca P., Zajemska M., Mlonka-Medrala A., Magdziarz A. // J. Cleaner Production. 2020. V. 248. 119277; https://doi.org/10.1016/j.jclepro. 2019.119277.
  8. 8. Schuh S., Frühhaber J., Lauer T., Winter F. // Energies. 2019. V. 12. P. 4396; https://doi.org/10.3390/en12224396
  9. 9. The San Diego Mechanism; https://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html
  10. 10. GRI-Mech 3.0 http://combustion.berkeley.edu/gri_mech/releases.html
  11. 11. AramcoMech 3.0 http://c3.nuigalway.ie/combustionchemistrycentre/mechanismdownloads/
  12. 12. NUIGMech1.1; http://c3.nuigalway.ie/combustionchemistrycentre/mechanismdownloads/
  13. 13. Starik A.M., Titova N.S., Yanovskii L.S. // Kinet. Catal. 1999. V. 40. P. 7.
  14. 14. Petrova M.V., Williams F.A. // Combust. Flame. 2006. V. 144. P. 526. https://doi.org/10.1016/J.COMBUSTFLAME.2005.07.016
  15. 15. Konnov A.A. // Proc. 28-th Sympos. (Intern.) on Combust. Edinburgh, 2000. Abstr. Symp. Pap. P. 317.
  16. 16. Koert D.N., Pitz W.J., Bozzelli J.W., Cernansky N.P. // Proc. 26th Sympos. (Intern.) on Pittsburg: The Combust. Inst., 1996. V. 26. P. 633; https://doi.org/10.1016/S0082-0784 (96)80270-0
  17. 17. Dagaut P., Cathonnet M., Boettner J.-C. // Int. J. Chem. Kinet. 1992. V. 24. № 9. P. 813; https://doi.org/10.1002/KIN.550240906
  18. 18. Арсентьев С.Д., Тавадян Л.А., Брюков М.Г. и др. // Хим. физика. 2022. Т. 41. № 11. С. 3.
  19. 19. Давтян А.Г., Манукян З.О., Арсентьев С.Д., Тавадян Л.А., Арутюнов В.С. // Хим. физика. 2023. Т. 42. № 9. С. 47.
  20. 20. Паланкоева А.С., Беляев А.А., Арутюнов В.С. // Хим. физика. 2022. Т. 41. № 6. С. 7; https://doi.org/ 10.31857/S0207401X22060097
  21. 21. Piehl J.A., Zyada A., Bravo L., Samimi-Abianeh O. // J. Combust. 2018. Article ID 8406754; https://doi.org/ 10.1155/2018/8406754
  22. 22. Erjiang Hu, Zhaohua Xu, Zhenhua Gao, Jiawei Xu, Zuo-hua Huang // Fuel. 2019. V. 256. 115933; https://doi.org/10.1016/j.fuel.2019.115933
  23. 23. Healy D., Kalitan D.M., Aul C.J., et al. // Energy Fuels. 2010. V. 24. P. 1521; https://doi.org/10.1021/ef9011005
  24. 24. Погосян Н.М., Погосян М.Дж., Арсентьев С.Д. и др. // Хим. физика, 2015. Т. 34. С. 29; https://doi:10.7868/S0207401X15040147
  25. 25. Погосян Н.М., Погосян М.Дж., Стрекова Л.Н., Тавадян Л.А., Арутюнов В.С. // Хим. физика. 2015. Т. 34. № 3. С. 35.
  26. 26. Погосян Н.М., Погосян М.Дж., Шаповалова О.В. и др. // Горение и взрыв. 2016. Т. 9. С. 83.
  27. 27. Погосян Н.М., Погосян М.Дж., Арсентьев С.Д. и др. // Нефтехимия. 2016. Т. 6. С. 612; https://doi.org/10.7868/S0028242116060174
  28. 28. Погосян Н.М., Погосян М.Дж., Арсентьев С.Д., и др. // Нефтехимия. 2020. Т. 60. С. 3; https://doi.org/10.31857/S002824212003017X
  29. 29. Погосян Н.М., Погосян М.Дж., Шаповалова О.В., Стрекова Л.Н., Арутюнов В.С. // Хим. физика. 2016. Т. 35. № 12. С. 30.
  30. 30. Алдошин С.М., Арутюнов В.С., Савченко В.И. и др. // Хим. физика 2021. Т. 40. № 5. С. 46; https://doi.org/ 10.31857/S0207401X21050034
  31. 31. ANSYS Academic Research CFD. Лицензия ФИЦ ХФ РАН идентифицируется по Customer ID:1080307.
  32. 32. Григорян Р.Р., Арсентьев С.Д., Манташян А.А. // Химия и хим. технология. ЕрГУ. 1983. № 2. C. 15.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library