RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Kinetic features of the methylinoleate oxidation in micelles of sodium dodecyl sulfate

PII
10.31857/S0207401X24010063-1
DOI
10.31857/S0207401X24010063
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 1
Pages
52-59
Abstract
By combining kinetic and physicochemical methods with computer simulation, new information was obtained on the oxidation of methyllinoleate (LH) in micelles of sodium dodecyl sulfate (SDS) at 323 K. The dynamics of the process is related to the nature of the change in the volume of the micellar phase (Vmic). A gradual increase in Vmic leads to a decrease in the concentration of the oxidation substrate. This change occurs not only due to chemical reactions, but also due to a change in the volume of the microreactor in which the chemical transformation takes place. The accumulation of hydroperoxides inside those micelles in which LH is oxidized leads to the transformation of their structure and the formation of mixed micelles. Kinetic analysis shows that chain termination can occur by a mixed mechanism. The reaction order according to the initiator varies from 0.61 to 0.71. Leading oxidation chains, peroxy radicals (LO2), are involved in both quadratic and linear termination. Linear termination occurs with the participation of hydroperoxyl radicals (HO2). The formation of HO2 is due to the reaction LO2 → → product + HO2 occurring in the organic phase. The resulting HO2 goes into the aqueous phase, where the rate of their disproportionation is very low. Formally, this is fixed as a linear open circuit.
Keywords
метиллинолеат додецилсульфат натрия кинетика окисления обрыв цепей
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
2

References

  1. 1. Denisov E.T., Afanas’ev I.B. Oxidation and Antioxidants in Organic Chemistry and Biology. Boca Raton–London–N.Y.–Singapore: CRC Press, 2005; https://doi.org/10.1201/9781420030853
  2. 2. Frankel E.N. Lipid Oxidation. The Oily Press Dundee, UK, 2005.
  3. 3. Меньщикова Е.Б., Ланкин В.З., Зенков Н.К. и др. Окислительный стресс. Прооксиданты и антиоксиданты. М.: Слово, 2006.
  4. 4. Сергеева М.Г., Варфоломеева А.Т. Каскад арахидоновой кислоты. М.: Народное образование, 2006.
  5. 5. Pliss E., Safiuli R., Zlotsky S. Inhibited Oxidation of Unsaturated Compounds. In Kinetics, Mechanism, Correlation of Structure with Reactionary Ability; LAP LAMBERT Academic Publishing: Saarbruchen, Germany, 2012.
  6. 6. Wilailuk C., Elias R., Mcclements D., Decker E. // Crit. Rev. Food Sci. Nutrition. 2007. V. 47. № 3. P. 299; https://doi.org/10.1080/ 10408390600754248
  7. 7. Niki E. Encyclopedia of Radicals in Chemistry, Biology and Materials. Chichester, West Sussex; Hoboken, N.J.: John Wiley & Sons, Ltd, 2012.; https://doi.org/10.1002/ 9781119953678.rad052
  8. 8. Chatgilialoglu C., Studer A. Encyclopedia of Radicals in Chemistry, Biology and Materials. West Sussex.: John Wiley & Sons, Ltd, 2012.; https://doi.org/10.1021/jz500502q
  9. 9. Buchachenko L. Magneto-Biology and Medicine. Hauppauge, NY. USA: Nova Science, 2014.
  10. 10. Garrec J., Monari A., Assfeld X. et al. // J. Phys. Chem. Lett. 2014. V. 5. P. 1653; https://doi.org/10.1021/jz500502q
  11. 11. Roginsky V.A. // Kinetics and Catalysis. 1996. V. 37. P. 488.
  12. 12. Roginsky V.A., Barsukova T.K. // Chem. Phys. Lipids. 2001. V. 11. P. 87; https://doi.org/10.1016/s0009-3084 (01)00148-7
  13. 13. Roginsky V.A. // Arch. Biochem. Biophys. 2003. V. 414. P. 261; https://doi.org/10.1016/s0003-9861 (03)00143-7
  14. 14. Roginsky V.A., Barsukova T.K., Loshadkin D.V. et al. // Chem. Phys. Lipids. 2003. V. 125. P. 49; https://doi.org/10.1016/S0009-3084 (03)00068-9
  15. 15. Roginsky V.A. // Chem. Phys. Lipids. 2010. V. 163. P. 127.
  16. 16. Yin H., Xu H., Porter N. // Chem. Rev. 2011. V. 111. P. 5944; https://doi.org/10.1021/cr200084z
  17. 17. Porter N.A. // J. Org. Chem. 2013. V. 78. P. 3511; https://doi.org/10.1021/jo4001433
  18. 18. Плисс Е.М., Лошадкин Д.В., Гробов А. М. и др. // Хим. физика. 2015. Т. 34. № 1. С. 72; https://doi.org/ 10.7868/S0207401X15010094
  19. 19. Kasaikina O.T., Mengele E.A., Plashchina I.G. // Colloid J. 2016. V. 78. № 6. P. 767; https://doi.org/ 10.1134/S1061933X16060065
  20. 20. Loshadkin D.V., Pliss E.M., Kasaikina O.T. // J. Appl. Chem. 2020. V. 93. 1083; https://doi.org/10.31857/S0044461820070178
  21. 21. Soloviev M.E., Moskalenko I.V., Pliss E.M. // Reac. Kin. Mech. Cat. 2019. V. 127. P. 561; https://doi.org/10.1007/s11144-019-01613-w
  22. 22. Pliss E.M., Soloviev M.E., Loshadkin D.V. et al. // Chem. Phys. Lipids. 2021. V. 237. P. 7; https://doi.org/ 10.1016/j.chemphyslip.2021.105089
  23. 23. Musialik M., Kita M., Litwinienko G. // Org. Biomol. Chem. 2008. V. 21. P. 667; https://doi.org/10.1039/b715089j
  24. 24. Тихонов И.В., Плисс Е.М.., Бородин Л.И. и др. // Хим. физика. 2017. Т. 36. № 6. С. 23; https://doi.org/ 10.7868/S0207401X17060152
  25. 25. Тихонов И.В., Бородин Л.И., Плисс Е.М. // Хим. физика. 2020. Т. 39. № 11. С. 6; https://doi.org/10.31857/S0207401X2011014X
  26. 26. Pliss E.M., Sokolov A.V., Loshadkin D.V., Popov S.V. “Kinetics 2012 — a program for calculating the kinetic parameters of chemical and biological processes”, version 2.0. Official Bulletin of the Federal Service for Intellectual Property Computer Programs. Database. Topologies of integrated circuits, No. 10. 2021. Certificate of state registration of computer programs, 2021665836.
  27. 27. Antunes F., Pinto R., Ross L. et al. // Intern. J. Chem. Kin. 1998. V. 30. P. 753.
  28. 28. Denisov E.T., Denisova T.G., Pokidova T.S. Handbook of Free Radical Initiators. Hoboken, N.J.: John Wiley & Sons, 2003. P. 878.
  29. 29. Frei B., Stocker R., Ames B. // Proc. Nat. Acad. Sci. USA. 1988. V. 85. P. 9748; https://doi.org/10.1073/pnas.85.24.9748
  30. 30. Kortum G., Vogel W., Andrussow K. Dissociation Constants of Organic Acids in Aqueous Solution. N.Y.: Plenum Press, 1961.
  31. 31. Buchachenko A.L., Wasserman L.A., Barashkova I.L. et al. // J. Phys. Chem. B. 2018. V. 12. P. 382; https://doi.org/10.1134/S1990793118030053
  32. 32. Buchachenko A.L., Kuznetsov D.A. // J. Phys. Chem. B. 2021. V.15. P. 11; https://doi.org/10.1134/S1990793121010024
  33. 33. Stovbun S.V., Zlenko D.V., Bukhvostov A.A. et al. // Sci. Rep. 2023.V. 13. P. 465; https:doi.org/10.1038/s41598-022-26744-4
  34. 34. Русина И.Ф., Вепринцев Т. Л., Васильев Р.Ф. // Хим. физика. 2022. Т. 41. № 2. С.19; https://doi.org/10.31857/S0207401X22020108
  35. 35. Davtyan A.G., Manukyan Z.O., Arsentev S.D. et al. // J. Phys. Chem. B. 2023. V. 17. P. 336; https:doi.org/10.1134/S1990793123020239
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library