RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Effect of terahertz radiation on the transport properties of albumin: binding with metal ions

PII
10.31857/S0207401X24020022-1
DOI
10.31857/S0207401X24020022
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 2
Pages
9-16
Abstract
The effect of terahertz radiation on clusterization of bovine serum albumin (BSA) molecules and on BSA binding with nickel, cobalt and cadmium ions is investigated by means of high performance liquid chromatography and EPR spectroscopy under variation of the concentration of molecular oxygen in solution. Irradiation is detected to remove steric hindrance for oxygen adsorption. The degree of nickel and cobalt ion binding with irradiated BSA samples is substantially higher than with non-irradiated ones, while for cadmium the binding degree is the same and rather low in both cases. The functional groups in BSA molecule participating in metal ion binding are revealed by means of modeling.
Keywords
излучение терагерцового диапазона бычий сывороточный альбумин комплексообразование ионы металлов ЭПР-спектроскопия
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. Cherkasova O.P., Serdyukov D.S., Nemova E.F. et al. // J. Biomed. Opt. 2021. V. 26. № 9. Р. 090902.
  2. 2. Siegel P.H. // IEEE Trans. Microwave Theory Tech. 2004. V. 52. P. 2438.
  3. 3. Parrott E.P.J., Sun Y., Pickwell-MacPherson E. // J. Mol. Struct. 2011. V. 1006. № 1–3. P. 66.
  4. 4. Черкасова О.П., Федоров В.И., Немова Е.Ф., Погодин А.С. // Оптика и спектроскопия. 2009. Т. 107. № 4. С. 566.
  5. 5. Markelz A.G., Mittleman D.M. // ACS. Photonics. 2022. V. 9. № 4. P. 1117; https://doi.org/10.1021/acsphotonics.2c00228.
  6. 6. Sitnikov D.S., Ilina I.V., Revkova V.A. et al. // Biomed. Opt. Express. 2021. V. 12. № 11. P. 7122.
  7. 7. Yaekashiwa N., Yoshida H., Otsuki S., Hayashi S.I., Kawase K. // Photonics. 2019. V. 6. P. 33.
  8. 8. Koyama S., Narita E., Suzuki Y. et al. // J. Radiat. Res. 2019. V. 60. № 4. P. 417.
  9. 9. Shi W., Wang Y., Hou L. et al. // J. Biophoton. 2021. V. 14. № 1. Article e202000237.
  10. 10. Peng Y., Shi C., Wu X., Zhu Y., Zhuang S. // BME Front. 2020. V. 2020. Article 2547609.
  11. 11. Zaytsev K.I., Dolganova I.N., Chernomyrdin N.V. et al. // J. Opt. 2020. V. 22. № 1. Article 013001. https://doi.org/10.1088/2040-8986/ab4dc3
  12. 12. Son J.-H., Oh S.J., Cheon H.J. // J. Appl. Phys. 2019. V. 125. № 19. Article 190901.
  13. 13. Wei L., Yu L., Jiaoqi H. et al. // Front. Lab. Med. 2018. V. 2. № 4. P. 127.
  14. 14. Di Fabrizio M., Lupi S., D’Arco A. // J. Phys.: Photonics. 2021. V. 3. № 3. Article 032001.
  15. 15. Schroer M.A., Schewa S., Gruzinov A.Y. et al. // Sci. Rep. 2021. V. 11. № 1. P. 22311.
  16. 16. Chen J.Y., Knab J.R., Ye S.J., He Y.F., Markelz A.G. // Appl. Phys. Lett. 2007. V. 90. Article 243901.
  17. 17. Tan N.Y., Li R., Bräuer P. et al. // Phys. Chem. Chem. Phys. 2015. V. 17. № 8. P. 5999.
  18. 18. Немова Е.Ф., Черкасова О.П., Николаев Н.А. и др. // Биофизика. 2020. Т. 65. № 3. С. 486.
  19. 19. Alhazmi H.A., Al Bratty M., Meraya A.M. et al. // Acta Biochim. Pol. 2021. V. 68. № 1. P. 99.
  20. 20. Liu X.F., Xia Y.M., Fang Y. // J. Inorg Biochem. 2005. V. 99. №. 7. P. 1449; https://doi.org/10.1016/j.jinorgbio.2005.02.025. PMID: 15908003.
  21. 21. Peng M., Shi S., Zhang Y. // Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2012. V. 85. №. 1. P. 190. https://doi.org/10.1016/j.saa.2011.09.059.
  22. 22. Hedberg Y.S., Dobryden I., Chaudhary H. et al. // Colloids Surf. B: Biointerfaces. 2019. V. 173. P. 751.
  23. 23. CRC Handbook of Chemistry and Physics. 95th edition. / Ed. Haynes W.M. Boca Raton: CRC Press, 2014.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library