RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Lipid-mediated effect of glycyrrhizin on the properties of the transmembrane domain of the E-protein of the SARS-CoV-2 virus

PII
10.31857/S0207401X24020065-1
DOI
10.31857/S0207401X24020065
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 2
Pages
56-61
Abstract
The interaction of glycyrrhizin with the transmembrane domain of the E-protein of the SARS-CoV-2 virus (E-protein Trans-Membrane domain, ETM) in a homogeneous aqueous solution and in a model lipid membrane was studied using the selective nuclear Overhauser effect (selective NOESY) and NMR relaxation methods. The selective NOESY showed the presence of the interaction of glycyrrhizin with ETM in an aqueous solution, which is consistent with the literature modeling data, which indicate the possibility of penetration of the glycyrrhizin molecule into the channel formed by the ETM molecules. However, this conclusion is not confirmed by NOESY experiments in model lipid membranes, DMPC/DHPC bicelles. At the same time, the NMR relaxation method revealed the effect of glycyrrhizin on the mobility of both lipids and ETM molecules in bicelles. This suggests that GA affects the activity of the coronavirus E-protein indirectly through lipids.
Keywords
глицирризин вирус SARS-CoV-2 E-белок коронавируса липидные мембраны ядерный магнитный резонанс
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Baglivo M., Baronio M., Natalini G. et al. // Acta Biomed. 2020. V. 91. № 1. P. 161.
  2. 2. Tang T., Bidon M., Jaimes J.A., Whittaker G.R., Daniel S. // Antiviral Res. 2020. V. 178. P. 104792.
  3. 3. Venkatagopalan P., Daskalova S.M., Lopez L.A., Dolezal K.A., Hogue B.G. // Virology. 2015. V. 478. P. 75.
  4. 4. Schoeman D., Fielding B.C. // Virol. J. 2019. V. 16. № 1. P. 69.
  5. 5. Mehregan A., Pérez-Conesa S., Zhuang Y. et al. // Biochim. Biophys. Acta-Biomembr. 2022. V. 1864. № 10. P. 183994.
  6. 6. Wilson L., Gage P., Ewart G. // Virology. 2006. V. 353. № 2. P. 294.
  7. 7. Gupta M.K., Vemula S., Donde R. et al. // J. Biomol. Struct. Dyn. 2021. V. 39. № 7. P. 2617.
  8. 8. Pervushin K., Tan E., Parthasarathy K. et al. // PLOS Pathog. 2009. V. 5. № 7. P. e1000511.
  9. 9. Chernyshev A. Pre-print. 2020. 10.26434/chemrxiv.12286421.v1
  10. 10. Толстиков Г.А., Балтина Л.А., Гранкина В.П., Кондратенко Р.М., Толстикова Т.Г. Новосибирск: Изд-во “Гео”, 2007.
  11. 11. Shibata S. // Yakugaku Zasshi. 2000. V. 120. № 10. P. 849.
  12. 12. Selyutina O.Y., Polyakov N.E. // Inten. J. Pharm. 2019. V. 559. P. 271.
  13. 13. Fiore C., Eisenhut M., Krausse R. et al. // Phytother. Res. 2008. V. 22. № 2. P. 141.
  14. 14. Sun Z.G., Zhao T.T., Lu N., Yang Y.A., Zhu H.L. // Mini Rev. Med. Chem. 2019. V. 19. № 10. P. 826.
  15. 15. Pompei R., Pani A., Flore O., Marcialis M.A., Loddo B. // Experentia. 1980. V. 36. № 3. P. 304.
  16. 16. Hoever G., Baltina L., Michaelis M. et al. // J. Med. Chem. 2005. V. 48. № 4. P. 1256.
  17. 17. Chrzanowski J., Chrzanowska A., Graboń W. // Phyther. Res. 2021. V. 35. № 2. P. 629.
  18. 18. Bailly C., Vergoten G. // Pharmacol. Ther. 2020. V. 214. P. 107618.
  19. 19. Fomenko V.V., Rudometova N.B., Yarovaya O.I. et al. // Molecules. 2022. V. 27. № 1. P. 295.
  20. 20. Kang H., Lieberman P.M. // J. Virol. 2011. V. 85. № 21. P. 11159.
  21. 21. Sekizawa T., Yanagi K., Itoyama Y. // Acta Virol. 2001. P. 51.
  22. 22. Baba M., Shigeta S. // Antiviral Res. 1987. V. 7. № 2. P. 99.
  23. 23. Lin J.C. // Ibid. 2003. V. 59. № 1. P. 41.
  24. 24. Duan E., Wang D., Fang L. et al. // Ibid. 2015. V. 120. P. 122.
  25. 25. Harada S. // Biochem. J. 2005. V. 392. P. 191.
  26. 26. Crance J.M., Lévêque F., Biziagos E. et al. // Antiviral Res. 1994. V. 23. № 1. P. 63.
  27. 27. Sui X., Yin J., Ren X. // Ibid. 2010. V. 85. № 2. P. 346.
  28. 28. Wolkerstorfer A., Kurz H., Bachhofner N., Szolar O.H.J. // Ibid. 2009. V. 83. № 2. P. 171.
  29. 29. Matsumoto Y., Matsuura T., Aoyagi H. et al. // PLoS One. 2013. V. 8. № 7. P. e68992.
  30. 30. Selyutina O.Y., Shelepova E.A., Paramonova E.D. et al. // Arch. Biochem. Biophys. 2020. V. 686. P. 108368.
  31. 31. Selyutina O.Y., Apanasenko I.E., Kim A.V. et al. // Coll. Surf. B. Biointerfaces. 2016. V. 147. P. 459.
  32. 32. Selyutina O.Y., Apanasenko I.E., Polyakov N.E. // Russ. Chem. Bull. 2015. V. 64. № 7. P. 1555.
  33. 33. Ellena J.F., Lepore L.S., Cafiso D.S. // J. Phys. Chem. 1993. V. 97. № 12. P. 2952.
  34. 34. Lepore L.S., Ellena J.F., Cafiso D.S. // Biophys. J. 1992. V. 61. № 3. P. 767.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library