RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Investigation of the behavior of dioxadet molecules in water by molecular dynamics simulation

PII
10.31857/S0207401X24020084-1
DOI
10.31857/S0207401X24020084
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 2
Pages
73-80
Abstract
The behaviour of dioxadet molecules in water is studied by the molecular dynamics simulation. This substance has anti-cancer properties and is used in clinical practice. However, its properties have not yet studied at the molecular level. This paper presents the first attempt of such investigation. Parametrization of dioxadet molecule was carried out using different available services: ATB, SwissParam as well as AmberTools in a standard form and with the use of additional quantum-chemical calculations. The obtained models are compared with each other. The number of hydrogen bonds of the molecule with water was calculated, the analysis of hydrated water was carried out. It was shown that the dioxadet molecules in water tend to associate. All the models obtained show similar properties, but the quantitative characteristics differ noticeably. Further research is needed to select the best model. Molecule topology files are available for use.
Keywords
молекулярно-динамическое моделирование диоксадэт параметризация молекулы водный раствор
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
6

References

  1. 1. Bespalov V.G., Kireeva G.S., Belyaeva O.A. et al. // J. Chemotherapy. 2016. V. 28. № 3. P. 203; https://doi.org/10.1179/1973947815Y.0000000040
  2. 2. Gershanovich M.L., Filov V.A., Kotova D.G. et al. // Vopr. Onkol. 1998. V. 44. №. 2. P. 216;
  3. 3. Zhikhoreva A.A., Belashov A.V., Bespalov V.G. et al. // Biomed. Opt. Express. 2018. V. 9. №. 11. P. 5817; https://doi.org/10.1364/BOE.9.005817
  4. 4. Fábián B., Sega M., Voloshin V.P., Medvedev N.N., Jedlovszky P. // J. Phys. Chem. B. 2017. V. 121. №. 13. P. 2814; https://doi.org/10.1021/acs.jpcb.7b00990
  5. 5. Hummer G. // New J. Phys. 2005. V. 7. №. 1. P. 34; https://doi.org/10.1088/1367-2630/7/1/034
  6. 6. Torrie G.M., Valleau J.P. // J. Comput. Phys. 1977. V. 23. №. 2. P. 187; https://doi.org/10.1016/0021-9991 (77)90121-8
  7. 7. Kim A.V., Shelepova E.A., Selyutina O.Y. et al. // Mol. Pharm. 2019. V. 16. №. 7. P. 3188; https://doi.org/10.1021/acs.molpharmaceut.9b00390
  8. 8. Kim A.V., Shelepova E.A., Evseenko V.I. et al. // J. Mol. Liq. 2021. V. 344. P. 117759; https://doi.org/10.1016/j.molliq.2021.117759
  9. 9. Зеликман В.А., Ким А.В., Медведев Н.Н. // Журн. структ. хим. 2016, Т. 57, №5, С. 978; https://doi.org/10.15372/JSC20160513
  10. 10. Зеликман М.В., Ким А.В., Медведев Н.Н., Селютина О.В., Поляков Н.Э. // ЖСХ. 2015. Т. 56. № 1. С. 73; http://doi.org/10.1134/S0022476615010102
  11. 11. PubChem https://pubchem.ncbi.nlm.nih.gov/compound/Dioxadet
  12. 12. Malde A.K., Zuo L., Breeze M. et al. // J. Chem. Theory Comput. 2011. V. 7. № 12, P. 4026; https://doi.org/10.1021/ct200196m
  13. 13. Zoete V., Cuendet M.A., Grosdidier A., Michielin O. // J. Comput. Chem. 2011. V. 32. № 11. P. 2359; https://doi.org/10.1002/jcc.21816
  14. 14. Case D.A., Cheatham III T.E., Darden T. et al. // Ibid. 2005. V. 26. №. 16. P. 1668; https://doi.org/10.1002/jcc.20290
  15. 15. Berendsen H.J.C., Postma J.P., van Gunsteren W.F., Hermans J. // Dordrecht: Springer, 1981. P. 331; https://doi.org/10.1007/978-94-015-7658-1_21
  16. 16. Abraham M.J., Murtola T., Schulz R. et al. // SoftwareX. 2015. V. 1. P. 19; https://doi.org/10.1016/j.softx.2015.06.001
  17. 17. Bussi G., Donadio D., Parrinello M. // J. Chem. Phys. 2007. V. 126. № 1. P. 014101; https://doi.org/10.1063/1.2408420
  18. 18. Nosé S. // J. Chem. Phys. 1984. V. 81. №. 1. P. 511; https://doi.org/10.1063/1.447334
  19. 19. Волошин В.П., Медведев Н.Н. // ЖСХ. 2021. Т. 62. № 5. С. 745; https://doi.org/10.26902/JSC_id72868
  20. 20. Shelepova E.A., Ludwig R., Paschek D., Medvedev N.N. // J. Mol. Liq. 2021. V. 329. P. 115589; https://doi.org/10.1016/j.molliq.2021.115589
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library