RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Inglet oxygen generaion via silver nanoparticles UV-photoexcitation

PII
10.31857/S0207401X24020114-1
DOI
10.31857/S0207401X24020114
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 2
Pages
103-111
Abstract
The NIR-luminescence of suspension of silver nanoparticles stabilized in distilled water has been investigated by photoexcitation of surface plasmon resonance (SPR). The observed short-living luminescence with the spectral maximum at 1300 nm is attributed to the singlet oxugen molecules luminescence. The singlet oxygen generation is assumed to pass in two stages as a result of three-photon process. First the one-photon SPR excitation of silver nanoparticle is occurred and leads to superoxide oxygen generation on the nanoparticle surface. Next the superoxide anion absorbs two more photons of the same laser pulse resulting in electron photodetachment with singlet oxygen formation. During a long period of UV-irradiation the studying suspension ceases to be photostable and sedimentation occurs. The sedimentation may be related to disturbance of nanoparticles steric stability resulting in more efficient superoxide anion adsorption on nanoparticles surface with silver oxide formation.
Keywords
наночастицы серебра фотовозбуждение поверхностный плазмонный резонанс синглетный кислород люминесценция арговит
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
7

References

  1. 1. Zhang Y.J. // Plasmonics. 2011. V. 6. P. 393.
  2. 2. Willets K.A.,Duyne R.P., // Annu. Rev. Phys. Chem. 2007. V. 58. P. 267.
  3. 3. Vankayala R., Kuo C.-L., Sagadevan A. et al. // J. Mater. Chem. B. 2013. V. 1. P. 4379.
  4. 4. Huang Y.-F., Zhang M., Zhao J.-M. et al. // Angewandte Chemie. 2014. V. 126. P. 2385.
  5. 5. Zhang W., Li Y., Niu J. et al. // Langmuir. 2013. V. 29. P. 4647.
  6. 6. Конев Д.В., Тихонов А.П., Роговина С.З. и др. // Хим. физика. 2013. Т. 32. № 8. С. 72.
  7. 7. Vankayala R., Sagadevan A., Vijayaraghavan P. et al. // Angewandte Chemie. 2011. V. 123. P. 10828.
  8. 8. Mogensen K.B., Kneipp K. // J. Phys. Chem. C. 2014. V. 118. P. 28075.
  9. 9. Западинский Б.И., Котова А.В., Матвеева И.А. и др. // Хим. физика. 2010. Т. 29. № 10. С. 87.
  10. 10. Demyanenko A.V., Bogomolov A.S., Dozmorov N.V. et al. // J. Phys. Chem. C. 2019. V. 123. P. 2175.
  11. 11. Nosaka Y., Daimon T., Nosaka A. Y. et al. // Phys. Chem. Chem. Phys. 2004. V. 6. P. 2917.
  12. 12. Pasparakis G., // Small. 2013. V. 9. P. 4130.
  13. 13. Гольдорт В.Г., Демьяненко А.В., Богомолов А.С. и др. // ПТЭ. 2019. Т. 2. С. 114.
  14. 14. Trushina A.P., Goldort V.G., Kochubei S.A. et al. // Chem. Phys. Lett. 2010. V. 485. P. 11.
  15. 15. Bagrov I.V., Kiselev V.M., Kislyakov I.M. et al. // Optics Spectroscopy. 2015. V. 118. P. 417.
  16. 16. Bregnhøj M., Westberg M., Jensen F. et al. // Phys. Chem. Chem. Phys. 2016. V. 18. P. 22946.
  17. 17. Shiller K., Muller F.V. // Polym. Intern. 1991. V. 25. P. 19.
  18. 18. Ryu A., Naru E., Arakane K. et al. // Chem. Pharm. Bull. 1997. V. 45. P. 1243.
  19. 19. Pettenkofer C., Pockrand I.,Otto A. // Surf. Sci. 1983. V. 135. P. 52.
  20. 20. Louie S.M., Gorham J.M., Tan J. et al. // Environ. Sci.: Nano. 2017. V. 4. P. 1866.
  21. 21. Kowalonek J.,Kaczmarek H., // Europ. Polym. J. 2010. V. 46. P. 345.
  22. 22. Реброва Г.А., Василевский В.К., Ребров Л.Б. и др. // Биомед. химия. 2007. Т. 53. С. 442.
  23. 23. Бурмистров В.А., Богданчикова Н.Е., Гюсан А.О. и др. // Сиб. науч. мед. журн. 2021. Т. 41. С. 4.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library