RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Effects of Surfactants on the Aggregation of 6,6'-Disubstituted Thiacarbocyanine Dyes in Aqueous Solutions

PII
10.31857/S0207401X24030016-1
DOI
10.31857/S0207401X24030016
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 3
Pages
3-13
Abstract
The aggregation properties of a number of 6,6'-substituted thiacarbocyanine dyes were studied by spectral-fluorescent methods: T-304, T-306, T-307, T-336 and, for comparison, thiacarbocyanine Cyan 2, which has no substituents in the 6,6'-positions, in aqueous buffer solutions and in the presence of various types of surfactants. The method of moments was used to characterize the absorption spectra (band positions, width, shape). Substituents in the 6,6'-positions significantly increase the ability of dyes T-304, T-306, T-307, T-336 to aggregation (dimerization, as well as to the formation of disordered aggregates with broad low-intensity absorption spectra). The introduction of surfactants leads to rearrangement of the spectra associated with the complex nature of the equilibria between monomers and aggregates of various structures (including surfactant molecules, if present), in particular, with a decrease in the contribution of disordered aggregates. However, the decomposition of dimeric aggregates of 6,6'-substituted cyanines is observed only at very high surfactant concentrations (~20 CMC and higher, where CMC is the critical micelle concentration). At the same time, the passing of surfactant concentrations through CMC does not significantly affect the spectral-fluorescent properties of the dyes, which is probably due to rather strong interactions of the dyes with individual surfactant molecules and premicellar associates of surfactants.
Keywords
тиакарбоцианиновые красители 6,6'-заместители спектрально-флуоресцентные свойства агрегация поверхностно-активные вещества
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Tatikolov A.S. // J. Photochem. Photobiol. C. 2012. V. 13. P. 55; https://doi.org/10.1016/j.jphotochemrev.2011.11.001
  2. 2. Pronkin P.G., Tatikolov A.S. // Molecules. 2022. V. 27. P. 6367; https://doi.org/10.3390/molecules27196367
  3. 3. Pronkin P.G., Tatikolov A.S. // Spectrochim. Acta, Part A. 2021. V. 263. P. 120171; https://doi.org/10.1016/j.saa.2021.120171
  4. 4. Pronkin P.G., Tatikolov A.S. // Spectrochim. Acta, Part A. 2022. V. 269. P. 120744; https://doi.org/10.1016/j.saa.2021.120744
  5. 5. Татиколов А.С. // Химическая физика. 2021. Т. 40. № 2. С. 11.
  6. 6. Пронкин П.Г., Татиколов А.С. // Хим. физика. 2021. Т. 40. № 2. С. 3; https://doi.org/10.31857/S0207401X2102014X
  7. 7. Татиколов А.С., Пронкин П.Г., Шведова Л.А., Панова И.Г. // Хим. физика. 2019. Т. 38. № 12. С. 11.
  8. 8. Пронкин П.Г., Татиколов А.С. // Хим.физика. 2022. Т. 41. № 2. С. 3; https://doi.org/10.31857/S0207401X22020091
  9. 9. Kovalska V.B., Volkova K.D., Losytskyy M.Yu. et al. // Spectrochim. Acta. Part A. 2006. V. 65. P. 271; https://doi.org/10.1016/j.saa.2005.10.042
  10. 10. Herz A.H. // Adv. Coll. Interf. Sci. 1977. V. 8. P. 237; https://doi.org/10.1016/0001-8686 (77)80011-0
  11. 11. Chibisov A.K., Prokhorenko V.I., Görner H. // Chem. Phys. 1999. V. 250. P. 47; https://doi.org/10.1016/S0301-0104 (99)00245-1
  12. 12. Sharma R., Shaheen A., Mahajan R.K. // Colloid Polym. Sci. 2011. V. 289. P. 43; https://doi.org/10.1007/s00396-010-2323-6
  13. 13. Goronja J.M., Janošević Ležaić A.M., Dimitrijević B.M., Malenović A.M., Stanisavljev D.R., Pejić N.D. // Hem. Ind. 2016. V. 70 (4). P. 485; https://doi.org/10.2298/HEMIND150622055G
  14. 14. Dyadyusha G.G., Ishchenko A.A. // J. Appl. Spectrosc. 1979. V. 30. P. 746; https://doi.org/10.1007/BF00615763
  15. 15. Акимкин Т.М., Татиколов А.С., Ярмолюк С.М. // Химия высоких энергий. 2011. Т. 45. № 3. С. 252.
  16. 16. Khimenko V., Chibisov A.K., Görner H. // J. Phys. Chem. A. 1997. V. 101. P. 7304; https://doi.org/10.1021/jp971472b
  17. 17. Noukakis D., Van der Auweraer M., Toppet S., De Schryver F. // J. Phys. Chem. 1995. V. 99. P. 11860; https://doi.org/10.1021/j100031a012
  18. 18. Колесников А.М., Михайленко Ф.А. // Успехи химии. 1987. Т. 56. №3. С. 466.
  19. 19. Шапиро Б.И. // Успехи химии. 2006. Т. 75. № 5. С. 484.
  20. 20. Чибисов А.К. // Химия высоких энергий. 2007. Т. 41. № 3. С. 239.
  21. 21. Акимкин Т.М., Татиколов А.С., Панова И.Г., Ярмолюк С.М. // Химия высоких энергий. 2011. Т. 45. № 6. С. 553.
  22. 22. Molinspiration, 2015. Calculation of Molecular Properties and Bioactivity Score; http://www.molinspiration.com (accessed June 25, 2021).
  23. 23. Pronkin P.G., Tatikolov A.C. // Spectrochimica Acta, Part A. 2023. V. 292. P. 122416; https://doi.org/10.1016/j.saa.2023.122416
  24. 24. Gromov S.P., Chibisov A.K., Alfimov M.V. // J. Phys. D. 2021. V. 15. P. 219; https://doi.org/10.1134/S1990793121020202
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library