RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Dynamics of Degradation of Polylactide-Natural Rubber Compositions under the Influence of UV Irradiation

PII
10.31857/S0207401X24030035-1
DOI
10.31857/S0207401X24030035
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 3
Pages
27-34
Abstract
The effect of ultraviolet radiation of various wavelengths (254 nm and 365 nm) on compositions based on polylactide with the addition of natural rubber was studied. It was found that the effect of the wavelength of 254 nm on the studied samples is much more active than 365 nm, which is characterized by a decrease in the melting temperature and the degree of crystallinity of polylactide in the compositions, as well as a deterioration in physical and mechanical properties. The IR spectroscopy method confirms the photodegradation process by changing the intensities of structurally sensitive polylactide and natural rubber bands.
Keywords
полилактид натуральный каучук фотодеструкция температура плавления ИК-спектры
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
2

References

  1. 1. Ates B., Koytepe S., Ulu A., Gurs-es C., Thakur V.K. // Chem. Rev. 2020. V. 120. № 17. Р. 9304; https://doi.org/10.1021/acs.chemrev.9b00553
  2. 2. Hamad K., Kaseem M., Ayyoob M., Joo J., Deri F. // Prog. Polym. Sci. 2018. V. 85 P. 83; https://doi.org/10.1016/j.progpolymsci.2018.07.001
  3. 3. Подзорова М.В., Тертышная Ю.В. // ЖПХ. 2019. Т. 92. № 6. С. 737; https://doi.org/10.1134/S0044461819060069
  4. 4. Тертышная Ю.В., Шибряева Л.С., Левина Н.С. // Хим. волокна. 2020. №1. С. 40; https://doi.org/10.1007/s10692-020-10148-z
  5. 5. Попов А.А., Зыкова А.К., Масталыгина Е.Е. // Хим. физика B. 2020. Т. 39. № 6. P. 71; https://doi.org/10.31857/S0207401X20060096
  6. 6. Li Y., Qiu Sh., Sun J. et al. // Chem. Eng. J. 2022. V. 428. P. 131979. https://doi.org/10.1016/j.cej.2021.131979
  7. 7. Yeo J.C.C., Muiruri J.K., Koh J.J. et al. // Adv. Funct. Mater. 2020. V. 30. № 30. Р. 2001565; https://doi.org/10.1002/adfm.v30.3010.1002/adfm.202001
  8. 8. Тертышная Ю.В., Карпова С.Г., Попов А.А. // Хим. физика B. 2017. Т. 36. № 6. P. 84; https://doi.org/ 10.7868/S0207401X17060140
  9. 9. Huang Y., Zhang C., Pan Y., et al. // Polym. Degrad. Stab. 2013. V. 9. P. 943; https://doi.org/10.1016/j.polymdegradstab.2013.02.018
  10. 10. Тертышная Ю.В., Хватов А.В., Попов А.А. // Хим. физика B. 2022. Т. 41. № 2. P. 86; https://doi.org/10.31857/S0207401X22020133
  11. 11. Olewnik-Kruszkowska E., Koter I., Skopin-ska-Wisniewskab J., Richert J. // J. Photochem. Photobiol. A: Chem. 2015. № 311. P. 144. https://doi.org/10.1016/j.jphotochem.2015.06.029
  12. 12. Подзорова М.В., Тертышная Ю.В. //Хим. физика. 2020. Т. 39. № 1. С. 57; https://doi.org/10.31857/S0207401X20010173
  13. 13. Ikada E. // J. Photopolym. Sci. Technol. 1997. V. 10. P. 265.
  14. 14. Tsuji H., Echizen Y., Nishimura Y. // Polym. Degrad. Stab. 2006. V. 91. Is. 5. P. 1128; https://doi.org/10.1016/j.polymdegradstab.2005.07.007
  15. 15. Marek A.A., Verney V. // Eur. Polym. J. 2016. V. 81. P. 239.
  16. 16. Bao Q., Wong W., Liu S., Tao X. // Polymers. 2022. V. 14. P. 1216; https://doi.org/10.3390/polym14061216
  17. 17. Kaynak C., Sarı B. // Appl. Clay Sci. 2016. V. 121–122. P. 86; https://doi.org/10.1016/j.clay.2015.12.025
  18. 18. Janorkar A.V., Metters A.T., Hirt D.E. // J. Appl. Polym. Sci. 2007. V. 106. P. 1042; https://doi.org/10.1002/app.24692
  19. 19. Lim L.-T., Auras R., Rubino M. // Prog. Polym. Sci. 2008. V. 33. P. 820; https://doi.org/10.1016/j.progpolymsci.2008.05.004
  20. 20. Li S., McCarthy S. // Macromolecules. 1999. V. 32. P. 4454; https://doi.org/10.1021/ma990117b.
  21. 21. Jeon H.J., Kim M.N. // Intern. Biodeterior. Biodegrad. 2013. V. 85. P. 289; https://doi.org/10.1016/j.ibiod.2013.08.013
  22. 22. Pan F., Chen L., Jiang Y.et al. // Intern. J. Biol. Macromol. 2018. V.119. P. 582; https://doi.org/10.1016/j.ijbiomac.2018.07.189
  23. 23. Bocchini S., Fukushima K., Di Blasio A., Fina A., Geobaldo F.F. // Biomacromolecules. 2010. V. 11. P. 2919; https://doi.org/10.1021/bm1006773
  24. 24. Tertyshnaya Y., Podzorova M., Moskovskiy M. // Polymers. 2021. V. 13. P. 461; https://doi.org/10.3390/polym13030461
  25. 25. Moura I., Botelho G., Machado A.V. // J. Polym. Environ. 2014. V. 22. P. 148; https://doi.org/10.1007/s10924-013-0614-y
  26. 26. Zhang C., Man C., Wang W., Jiang L., Dan Y. // Polym. Plast. Technol. 2011. V. 50. P. 810; https://doi.org/10.1080/03602559.2011.551970
  27. 27. Yang W., Dominici F., Fortunati E., Kenny J.M., Puglia D. // Ind. Crop. Prod. 2015. V. 77. P. 833; https://doi.org/10.1016/j.indcrop.2015.09.057
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library