RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Study of patterns and mechanisms of combustion of powdered and granulated T-C-B system

PII
10.31857/S0207401X24040077-1
DOI
10.31857/S0207401X24040077
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 4
Pages
53-65
Abstract
Experimental studies of the combustion patterns of the ternary system (100 – x)(Ti + C) – x(Ti + 2B) of bulk density in powder and granular form used for the synthesis of composite ceramics TiC–TiB2 were carried out. The study shows that the dependence of the powder mixture combustion rate on the Ti + 2B content has a non-monotonic character, which is associated with the influence of impurity gas release on the combustion process. By removing the influence of impurity gas by granulation, a monotonic dependence with two characteristic sections was obtained. For the granulated mixture, an increase in the Ti + 2B content > 60 wt. % leads to a change from the conductive combustion mode to the convective one, accompanied by a sharp increase in the combustion rate. For the conductive combustion mode, the combustion rate of the substance inside the granule and the combustion transfer time from the granule to the granule were determined, which allowed us to estimate the inhibitory effect of impurity gas release on the combustion rate of powder mixtures of different composition. For the convective combustion mode, it was shown that a decrease in the content of the gasifying additive in the mixture (granulation with ethyl alcohol) led to an unexpected result: an increase in the combustion rate of the mixture. For compositions with (Ti + 2B) > 60 wt. % the combustion rate with counter filtration of impurity gases was determined for the first time, which made it possible to estimate the front rate increase according to the filtration combustion theory. According to XRD results, the combustion products of all compositions contain only two main phases TiC and TiB2.
Keywords
закономерности горения система Ti–C–B гранулирование кондуктивный и конвективный режимы примесное газовыделение самораспространяющийся высокотемпературный синтез
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
7

References

  1. 1. Liu L., Aydinyan S., Minasyan T., Hussainova I. // Appl. Sci. 2020. V. 10. № 9. https://doi.org/10.3390/app10093283
  2. 2. Attar H., Bonisch M., Calin M., Zhang, L., Scudino S., Eckert J. // Acta Mater. 2014. V. 76. № 1. P. 13. https://doi.org/10.1016/j.actamat.2014.05.022
  3. 3. Xia M., Liu A., Hou Z. et al. // J. Alloys Compd. 2017. V. 728. № 4. P. 436. https://doi.org/10.1016/j.jallcom.2017.09.033
  4. 4. Rogachev A.S., Mukasyan A.S. Combustion for material synthesis. N.Y.: CRC Press, Taylor and Francis Group, 2015.
  5. 5. Кришеник П.М., Костин С.В., Рогачев С.А. // Хим. физика. 2022. Т. 41. № 3. С. 73. https://doi.org/10.31857/S0207401X22030086
  6. 6. Рогачев С.А., Шкадинский К.Г., Кришеник П.М. // Хим. физика. 2022. Т. 41. № 8. С. 59. https://doi.org/10.31857/S0207401X22030098
  7. 7. Сеплярский Б.С. // Докл. АН. 2004. Т. 396. № 5. С. 640. https://doi.org/10.1023/B:DOPC.0000033505.34075.0a
  8. 8. Rubtsov N.M., Seplyarskii B.S., Alymov M.I. Ignition and Wave Processes in Combustion of Solids. AG, Cham. Switzerland: Springer International Publishing, 2017.
  9. 9. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2022. Т. 41. № 1. С. 42. https://doi.org/10.31857/S0207401X22010071
  10. 10. Мержанов А.Г., Мукасьян А.С. Твердопламенное горение. М.: Торус Пресс, 2007.
  11. 11. Мукасьян А.С., Шугаев В.А., Кирьяков Н.И. // Физика горения и взрыва. 1993. Т. 29. № 1. С. 9.
  12. 12. Vadchenko S.G. // Intern. J. Self-Propag. High-Temp. Synth. 2010. V. 19. P. 206. https://doi.org/10.3103/S1061386210030064
  13. 13. Vadchenko S.G. // Combust. Explos. Shock Waves. 2019. V. 55. P. 282. https://doi.org/10.1134/S0010508219030055
  14. 14. Seplyarskii B.S., Kochetkov R.A. // Intern. J. Self-Propag. High-Temp. Synth. 2017. V. 26. №. 2. P. 134. https://doi.org/10.3103/S106138621702011X
  15. 15. Сеплярский Б.С., Тарасов А.Г., Кочетков Р.А., Ковалев И.Д. // Физика горения и взрыва. 2014. Т. 50. № 3. С. 61. https://doi.org/10.1134/S0010508214030071
  16. 16. Vallauri D., Atias Adrian I.C., Chrysanthou A. // J. Eur. Ceram. Soc. 2008. V. 28. №. 8. P. 1697. https://doi.org/10.1016/j.jeurceramsoc.2007.11.011
  17. 17. Боровинская И.П., Прокудина В.К., Ратников В.И. // Изв. вузов. Порошковая металлургия и функциональные покрытия. 2010. № 4. С. 26.
  18. 18. Borovinskaya I.P., Pityulin A.N. Self-Propagating High-Temperature Synthesis of Materials. London, United Kingdom: Taylor and Francis Ltd. 2002. P. 270–292.
  19. 19. Brodkin D., Kalidindi S., Barsoum M. Zavaliangos A. // J. Amer. Ceram. Soc. 1996. V. 79. №. 7. P. 1945.
  20. 20. Tijo D., Masanta M., // Surf. Coat. Technol. 2018. V. 344. №. 25. P. 579. https://doi.org/10.1016/j.surfcoat.2018.03.083
  21. 21. Qian J.C., Zhou Z.F., Zhang W.J., Li K.Y. et al. // Surf. Coat. Technol. 2015. V. 270. №. 25. P. 290. https://doi.org/10.1016/j.surfcoat.2015.02.043
  22. 22. Корчагин А.И., Гаврилов В.Е., Зарко А.Б. и др. // ФГВ. 2017. Т. 53. № 6. https://doi.org/10.15372/FGV20170607
  23. 23. Акопян А.Г., Долуханян С.К., Боровинская И.П. // Там же. 1978. № 3. С. 70.
  24. 24. Щербаков В.А., Питюлин А.Н. // Там же. 1983. № 5. С. 108.
  25. 25. Grigoryan Н.Е., Rogachev A.S, Sytschev А.Е. // Intern. J. Self-Propag. High-Temp. Synth. 1997. V. 6. № 1. P. 29.
  26. 26. Seplyarskii B.S., Kochetkov R.A., Lisina T.G., Rubtsov N.M., Abzalov N.I. // Combust. Flame. 2022. V. 236. P. 111811. https://doi.org/10.1016/j.combustflame.2021.111811
  27. 27. Vadchenko S.G. // Intern. J. Self-Propag. High-Temp. Synth. 2015. V. 24. P. 89. https://doi.org/10.3103/S1061386215020107
  28. 28. Nikogosov V.N., Nersesyan G.A., Shcherbakov V., Kharatyan S., Shteinberg A.S. // Ibid. 1999. V. 8. P. 321.
  29. 29. Сеплярский Б.С., Кочетков Р.А., Лисина Т.Г., Абзалов Н.И. // Физика горения и взрыва. 2021. Т. 57. № 1. С. 65. https://doi.org/10.15372/FGV20210107
  30. 30. Сеплярский Б.С., Абзалов Н.И., Кочетков Р.А., Лисина Т.Г. // Хим. физика. 2021. Т. 40. № 3. C. 23. https://doi.org/10.31857/S0207401X21030109
  31. 31. Сеплярский Б.С., Кочетков Р.А. // Хим. физика. 2017. Т. 36. № 9. С. 21. https://doi.org/10.7868/S0207401X17090126
  32. 32. Зенин А.А. Мержанов А., Несесян Г.А. // Физика горения и взрыва. 1981. № 1. С 79.
  33. 33. Lapshin O.V., Prokofev V.G., Smolyakov V.K. // Intern. J. Self-Propag. High-Temp. Synth. 2018. V. 27. № 1. P. 14. https://doi.org/10.3103/S1061386218010041
  34. 34. Алдушин А.П., Мержанов А.Г. Распространение тепловых волн в гетерогенных средах. Новосибирск: Наука, 1988.
  35. 35. Бабичев А.П., Бабушкина Н.А., Братсковский А.М. и др. Физические величины. Справочник. М.: Энергоатомиздат, 1991.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library