- PII
- 10.31857/S0207401X24040109-1
- DOI
- 10.31857/S0207401X24040109
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 4
- Pages
- 81-87
- Abstract
- The article is dedicated to the structural-functional damage of fibrinogen treated with HOCl in the concentration range (10–100 µM). The MS/MS method detected 15 modified amino acid residues with a dose-dependent susceptibility to the oxidizing agent. Using turbidity measurements and confocal laser scanning microscopy, it has been shown that fibrinogen oxidation by 25–100 µM HOCl leads to the denser fibrin gel formation, as well as delayed polymerization onset and a decrease in the slope of the polymerization curve, presumably due to conformational changes of the protein. At lower HOCl concentration (10 µM), at least six amino acid residues were substantially modified (9–29%), but functionally such modified protein was not distinguishable from the native one. The detected amino acid residues are assumed to be ROS scavengers that prevent fibrinogen functions alteration.
- Keywords
- фибриноген фибриновый гель окисление высокоэффективная жидкостная хроматография тандемная масс-спектрометрия конфокальная лазерная сканирующая микроскопия
- Date of publication
- 15.04.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 51
References
- 1. Weigandt K.M., White N., Chung D. et al. // Biophys. J. 2012. V. 103. № 11. P. 2399. https://doi.org/10.1016/j.bpj.2012.10.036
- 2. Klebanoff S.J. // J. Leukocyte Biology. 2005. V. 77. № 5. P. 598. https://doi.org/10.1189/jlb.1204697
- 3. Hawkins C.L., Pattison D.I., Davies M.J. // Amino Acids. 2003. V. 25. № 3–4. P. 259. https://doi.org/10.1007/s00726-003-0016-x
- 4. Yurina L.V., Vasilyeva A.D., Bugrova A.E. et al. // Dokl Biochem Biophys. 2019. V. 484. № 1. P. 37. https://doi.org/10.1134/S1607672919010101
- 5. Yurina L.V., Vasilyeva A.D., Indeykina M.I. et al. // Free Radical Research. 2019. V. 53. № 4. P. 430. https://doi.org/10.1080/10715762.2019.1600686
- 6. Васильева А.Д., Юрина Л.В., Азарова Д.Ю. и др. // Хим. физика. 2022. Т. 41. № 2. C. 51. https://doi.org/10.31857/S0207401X220201455
- 7. White N.J., Wang Y., Fu X. et al. // Free Radical Biol.Med. 2016. V. 96. P. 181. https://doi.org/10.1016/j.freeradbiomed.2016.04.023
- 8. Lau W.H., White N.J., Yeo T.W. et al. // Sci Rep. 2021. V. 11. № 1. P. 15691. https://doi.org/10.1038/s41598-021-94401-3
- 9. Щеголихин А.Н., Васильева А.Д., Юрина Л.В. и др. // Хим. физика. 2021. Т. 40. № 2. С. 66. https://doi.org/10.31857/S0207401X21020151
- 10. Вассерман Л.А., Юрина Л.В., Васильева А.Д. и др. // Хим. физика. 2021. Т. 40. № 11. С. 59. https://doi.org/10.31857/S0207401X21110108
- 11. Васильев Е.С., Карпов Г.В., Шартава Д.К. и др. // Хим. физика. 2022. Т. 41. № 5. С. 10. https://doi.org/10.31857/S0207401X22050119
- 12. Weisel J.W., Nagaswami C. // Biophys. J. 1992. V. 63. № 1. P. 111. https://doi.org/10.1016/S0006-3495 (92)81594-1
- 13. Kaufmanova J., Stikarova J., Hlavackova A. et al. // Antioxidants. 2021. V. 10. № 6. P. 923. https://doi.org/10.3390/antiox10060923
- 14. Sakharov D.V., Nagelkerke J.F., Rijken D.C. // Biol. Chem. 1996. V. 271. № 4. P. 2133. https://doi.org/10.1074/jbc.271.4.2133
- 15. Pechik I., Madrazo J., Mosesson M.W. et al. // Proc. Natl. Acad. Sci. U.S.A. 2004. V. 101. № 9. P. 2718. https://doi.org/10.1073/pnas.0303440101
- 16. Weisel J.W., Litvinov R.I. // Fibrous Proteins: Structures and Mechanisms. Cham: Springer Intern. Publ. 2017. V. 82. P. 405. https://doi.org/10.1007/978-3-319-49674-0_13
- 17. Medved L., Weisel J.W. // Thromb Haemost. 2022. V. 122. № 8. P. 1265. https://doi.org/10.1055/a-1719-5584