RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Development of a comprehensive theoretical and experimental methodology for evaluating the parameters of recycling by pyrolysis of plastic based on polycarbonate and polyethylene

PII
10.31857/S0207401X24040126-1
DOI
10.31857/S0207401X24040126
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 4
Pages
97-109
Abstract
The results of thermogravimetric and Fourier transform infrared (FTIR) analysis of polymer composite materials (PCM) based on polyethylene and polycarbonate are presented and compared to the polymers polyethylene and polycarbonate. Empirical data were obtained for mathematical modeling, including the amount of solid residue upon pyrolysis, volatile yield, and ash content of the studied PCMs and polymers. Results of the mathematical modeling of the pyrolysis process at a temperature of 600 °C are presented to quantitatively assess the composition of the pyrolysis gas.
Keywords
пиролиз полиэтилен поликарбонат термогравиметрический анализ ИК-фурье-анализ пиролизный газ
Date of publication
15.04.2024
Year of publication
2024
Number of purchasers
0
Views
51

References

  1. 1. Kim S. // J. Chem. 2010. № 8. P. 54.
  2. 2. Потапов М.С., Новоженов В.А. // Технологии и оборудование химической, биотехнологической и пищевой промышленности. 2014. С. 55.
  3. 3. Бучилин Н.В., Строганова Е.Е. // Успехи в химии и хим. технол. 2006. Т. 20. №. 6. С. 62.
  4. 4. Коржавый А.П., Логинов Б.М., Логинова М.Б., Белов Ю.С. // Наукоемк. технол. 2014. Т. 15. № 2. С. 47.
  5. 5. Перова А.Н., Бревнов П.Н., Усачев С.В. и др. // Хим. физика. 2021. Т. 40. № 7. С. 49. https://doi.org/10.31857/S0207401X21070074
  6. 6. Колесникова Н.Н., Королева А.В., Лихачев А.Н. и др. // Вестн. Казанского технологич. ун-та. 2013. Т. 16. № 21. С. 164.
  7. 7. Трушляков В.И., Русских Г.С., Давыдович Д.Ю., Иордан Ю.В., Фатеев П.Д. Способ разработки полимерного композиционного материала с учетом его последующей утилизации и устройство для его реализации: Патент №2776312 РФ // ФИПС. 2022. № 20. С. 9.
  8. 8. Трушляков В.И., Русских Г.С., Рыбаков Ю.Н., Данилов И.В. Способ утилизации отработавшей пластиковой тары для нефтепродуктов, находящейся в удаленных территориях и устройство для его реализации: Патент № 2779757 РФ // ФИПС. 2022. № 26. С. 7.
  9. 9. Горфин О.С., Зюзин Б.Ф., Яблонев А.Л., Назаров М.С. // Тр. Инсторфа. 2017. № 15(68). С. 22.
  10. 10. Kulas D.G., Zolghadr A., Chaudhari U.S., Shonnard D.R. // J. Cleaner Prod. 2023. V. 384. P. 135542. https://doi.org/10.1016/j.jclepro.2022.135542
  11. 11. Дорофеенко С.О., Полианчик Е.В. // Хим. физика. 2022. Т. 41. № 3. С. 29. https://doi.org/10.31857/S0207401X22030049
  12. 12. Кислов В.М., Цветков М.В., Зайченко А.Ю., Подлесный Д.Н., Салганский Е.А. // Хим. физика. 2021. Т. 40. № 9. С. 27. https://doi.org/10.31857/S0207401X21090053
  13. 13. Liu D., Zhang L., Zhang B. et al. // Chem. Eng. Sci. 2022. P. 117718. https://doi.org/10.1016/j.ces.2022.117718
  14. 14. Atallah E., Defoort F., Pisch A., Dupont C. // Fuel Process. Technol. 2022. V. 235. P. 107369. https://doi.org/10.1016/j.fuproc.2022.107369
  15. 15. Попов С.К., Ипполитов В.А. // Учебное пособие. М.: Издательство МЭИ, 2016. С. 48.
  16. 16. Balcerzak Т. // J. Magn. Magn. Mater. 2008. V. 320. № 19. P. 2359–2363. https://doi.org/10.1016/j.jmmm.2008.05.015
  17. 17. Koga Y. Solution thermodynamics and its application to aqueous solutions: a differential approach. Elsevier, 2017.
  18. 18. Hu Z., Peng Y., Sun F., Chen S., Zhou Y. // Fuel. 2021. V. 293. P. 120462. https://doi.org/10.1016/j.fuel.2021.120462
  19. 19. Safarian S., Unnþórsson R., Richter C. // Renewable and Sustainable Energy Rev. 2019. V. 110. P. 378. https://doi.org/10.1016/j.rser.2019.05.003
  20. 20. Чалов К.В., Луговой Ю.В., Сульман М.Г., Косивцов Ю.Ю. // Вестн. Твер. гос. ун-та. Сер. Хим. 2020. № 4. С. 120.
  21. 21. Тереза А.М., Агафонов Г.Л., Андержанов Э.К., Медведев С.П. // Хим. физика. 2021. Т. 40. № 8. С. 56.
  22. 22. Serras-Malillos A., Acha E., Lopez-Urionabarrenechea A., Perez-Martinez B. B., Caballero, B. M. // Chemosphere. 2022. V. 300. P. 134499. https://doi.org/10.1016/j.chemosphere.2022.134499
  23. 23. Sun Y., Dong B., Wang L., Li H., Thorin E. // Energy Convers. Manage. 2022. V. 266. P. 115835. https://doi.org/10.1016/j.enconman.2022.115835
  24. 24. Wen Y., Zaini I. N., Wang S. et al. // Energy. 2021. V. 229. P. 120693. https://doi.org/10.1016/j.energy.2021.120693
  25. 25. Monteiro E., Rouboa A., Ouazzani W. T., El Farissi L. // Energy Rep. 2022. V. 8. P. 1577. https://doi.org/10.1016/j.egyr.2023.01.077
  26. 26. Khan M.S.A., Grioui N., Halouani K., Benelmir R. // Energy Convers. Manage.: X. 2022. V. 13. P. 100170. https://doi.org/10.1016/j.ecmx.2021.100170
  27. 27. Pan R., Duque J.V.F., Martins M.F., Debenest G. // Heliyon. 2020. V. 6. № 11. P. e05598. https://doi.org/10.1016/j.heliyon.2020.e05598
  28. 28. Pan R., Duque J.V.F., Debenest G. // Waste Biomass Valorization. 2021. V. 12. № 5. P. 2623. https://doi.org/10.1007/s12649-020-01181-4
  29. 29. Zaker A., Chen Z., Zaheer-Uddin M., Guo J. // J. Environ. Chem. Eng. 2021. V. 9. №. 1. P. 104554. https://doi.org/10.1016/j.jece.2020.104554
  30. 30. Zhao D., Wang X., Miller J. B., Huber G. W. // ChemSusChem. 2020. V. 13. № 7. P. 1764. https://doi.org/10.1002/cssc.201903434
  31. 31. Apaydin-Varol E., Polat S., Pütün A. // J. Therm. Sci. 2014. V. 18. Р. 833. https://doi.org/10.2298/TSCI1403833A
  32. 32. Feng Y., Wang B., Wang F. et al. // Polym. Degrad. Stab. 2014. V. 107. P. 129. https://doi.org/10.1016/j.polymdegradstab.2014.05.012
  33. 33. Charde S.J., Sonawane S.S., Sonawane S.H., Shimpi N.G. // Chem. Biochem. Eng. Q. 2018. V. 32. № 2. P. 151. https://doi.org/10.15255/CABEQ.2017.1173
  34. 34. Feng J., Hao J., Du J., Yang R. // Polym. Degrad. Stab. 2012. V. 97. №. 4. P. 605. https://doi.org/10.1016/j.polymdegradstab.2012.01.011
  35. 35. Rabea K., Michailos S., Akram M. et al. // Energy Convers. Manage. 2022. V. 258. P. 115495. https://doi.org/10.1016/j.enconman.2022.115495
  36. 36. Fedyukhin A.V., Sultanguzin I.A., Akhmetova I.G. et al. Power and industry process simulation using Aspen ONE and THERMOFLEX. Kazan: Kazan State Power Engineering University, 2020. https://doi.org/10.3390/en15207792
  37. 37. Fu Z., Hua F., Yang S., Wang H., Cheng Y. // J. Anal. Appl. Pyrolysis. 2023. P. 105877. https://doi.org/10.1016/j.jaap.2023.105877
  38. 38. ГОСТ Р 55837-2013. Ресурсосбережение. Наилучшие доступные технологии. Обработка отходящих газов при сжигании отходов. М.: Стандартинформ, 2016.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library