RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Structural features of polylactide and natural rubber films produced by solution casting

PII
10.31857/S0207401X24040133-1
DOI
10.31857/S0207401X24040133
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 4
Pages
110-118
Abstract
Composite film samples of polylactide-natural rubber with a rubber content of 5, 10 and 15 wt. % were obtained by the solution method. The study of morphology showed the presence of rubber inclusions in the form of drops in the polylactide matrix. Thermophysical characteristics were determined by differential scanning calorimetry. It was determined that when rubber was added, the peak of cold crystallization of polylactide disappears on melting thermograms, the melting temperature decreases by 1–4°C compared to 100% polylactide. The structure of the obtained compositions was studied by nuclear magnetic resonance, electron paramagnetic resonance, and X-ray diffraction. The diffraction patterns of the samples contain reflections characteristic of the crystalline α-form of polylactide.
Keywords
полилактид температура плавления степень кристалличности рентгеновская дифракция время корреляции спектры ЯМР
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
2

References

  1. 1. Тертышная Ю.В., Хватов А.В., Попов А.А. // Хим. физ. 2022. Т. 41. № 2. С. 86. https://doi.org/10.31857/S0207401X22020133
  2. 2. Rogovina S., Zhorina L., Gatin A. et al. // Polymers. 2020. V. 12. P. 1088. https://doi.org/10.3390/polym12051088
  3. 3. Варьян И.А., Колесникова Н.Н., Попов А.А. // Хим. физика 2022. Т. 40. № 12. C. 42. https://doi.org/10.31857/S0207401X21120153
  4. 4. Zhang C., Wang W., Huang Y. et al. // Materials and Design. 2013. V. 45. P. 198. https://doi.org/10.1016/j.matdes.2012.09.024
  5. 5. Sia W.-L., Yuana W.-Q., Lia Y.-D., Chenb Y.-K., Zengabc J.-B. // Polymer Test. 2018. V. 65. P. 249. https://doi.org/10.1016/j.polymertesting.2017.11.030
  6. 6. Роговина С.З., Алексанян К.В., Владимиров Л.В., Берлин А.А. // Хим. физика. 2019. Т. 38. № 9. С. 39. https://doi.org/10.1134/S0207401X19090097
  7. 7. Lan X., Li X., Liu Z. et al. // J. Macromol. Sci., Pure Appl. Chem. 2013. V. 50. P. 861.
  8. 8. Tee Y.B., Talib R.A., Abdan K. et al. // Agric. Agric. Sci. Proc. 2014. V. 2. P. 289. https://doi.org/10.1016/j.aaspro.2014.11.041
  9. 9. Alias N.F., Ismail H. // Polym.-Plast. Technol. Mater. 2019. V. 58. P. 1399. https://doi.org/10.1080/25740881.2018.1563118
  10. 10. Ali Shah A., Hasan F., Shah Z., Kanwal N., Zeb S. // Intern. Biodeterior. Biodegrad. 2013. V. 83. P.145. https://doi.org/10.1016/j.ibiod.2013.05.004
  11. 11. Suksut B., Deeprasertkul C. // J. Polym. Environ. 2010. V. 19. P. 288. https://doi.org/10.1007/s10924-010-0278-9
  12. 12. Ishida S., Nagasaki R., Chino K., Dong T., Inoue Y. // J. Appl. Polym. Sci. 2009. V. 113. P. 558. https://doi.org/10.1002/app.30134
  13. 13. Bitinis N., Verdejo R., Cassagnau P., Lopez-Manchado M. // Mater. Chem. Phys. 2011. V. 129. P. 823. https://doi.org/10.1016/j.matchemphys.2011.05.016
  14. 14. Garlotta D. // J. Polym. Environ. 2001. V. 9. P. 63. https://doi.org/10.1023/A:1020200822435
  15. 15. Ольхов А.А., Гольдштрах М.А., Шибряева Л.С., Тертышная Ю.В. и др. // Химия в интересах устойчивого развития. 2016. Т. 24. № 5. С. 633. https://doi.org/10.15372/KhUR20160506
  16. 16. Zhou X., Feng J.C., Yi J. J., Wang L. // Mater. Design. 2013. V. 49. P. 502. https://doi.org/10.1016/j.matdes.2013.01.069
  17. 17. Auras R., Harte B., Selke S. // Macromol. Biosci. 2004. V. 4. P. 835. https://doi.org/10.1002.MABI.200400043
  18. 18. Krivandin A.V., Solov’еva A.B., Glagolev N.N., Shatalova O.V., Kotova S.L. // Polymer. 2003. V. 44. P. 5789. https://doi.org/10.1016/S0032-3861 (03)00588-3
  19. 19. Казарина О.В., Морозовa А.Г., Федюшкин И.Л. // Высокомолекуляр. соединения. Б. 2021. Т. 63. № 2. С. 83. https://doi.org/10.31857/S2308113921020054
  20. 20. Tertyshnaya Y., Karpova S., Moskovskiy M., Dorokhov A. // Polymers. 2021. V. 13. Р. 2232. https://doi.org/10.3390/polym13142232
  21. 21. Кулезнев В.Н. Смеси полимеров. М.: Химия, 1980..
  22. 22. Тертышная Ю.В., Карпова С.Г., Подзорова М.В. // Хим. физика. 2021. Т. 40. № 9. С. 50. https://doi.org/10.31857/S0207401X21090090
  23. 23. Zhang L., Zhao G., Wang G. // Polymers. 2021. V. 13. 3280. https://doi.org/10.3390/polym13193280
  24. 24. Тертышная Ю.В., Кривандин А.В., Шаталова О.В. // Хим. физика. 2023. Т. 42. № 1. С. 43. https://doi.org/10.31857/S0207401X23010120
  25. 25. Тертышная Ю.В., Карпова С.Г., Шаталова О.В., Кривандин А.В., Шибряева Л.С. // Высокомолекуляр. соединения. А. 2016. Т. 58. № 1. С. 54. https://doi.org/10.7868/S2308112016010119
  26. 26. Wang H., Zhang J., Tashiro K. // Macromolecules. 2017. V. 50. P. 3285.
  27. 27. Cartier L., Okihara T., Ikada Y., Tsuji H., Puiggali J., Lotz B. // Polymer. 2000. V. 41. P. 8909.
  28. 28. Xu C., Yuan D., Fu L., Chen Y. // Polym. Test. 2014. V. 37. P. 94. https://doi.org/10.1016/j.polymertesting.2014.05.005
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library