- PII
- 10.31857/S0207401X24050114-1
- DOI
- 10.31857/S0207401X24050114
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 5
- Pages
- 93-99
- Abstract
- Currently, modified oxidized (intercalated) graphites and thermally expanded graphites obtained from them are used in solving many applied problems. This is due to the fact that while retaining all the properties of layered graphite compounds, split graphite particles have important new properties, such as ease of molding, low bulk density, and active interaction with the polymer matrix. However, the question of the mechanisms of expansion of oxidized graphite and the properties of thermally expanded graphite particles split into layers has not been sufficiently studied. The establishment of experimental patterns of expansion processes of graphite oxidized by acids contributes to the understanding of the set of stages of complex processes occurring during the expansion of graphite particles in a gas atmosphere and in polymer matrices. The purpose of the work was to synthesize a colloidal-graphite suspension based on thermally expanded graphite particles, to study the properties of suspensions and expansion processes of oxidized graphite during thermal and microwave heating. As a result of modifying thermally expanded graphite with low bulk density in activating media, colloidal graphite suspensions are synthesized without a vibration grinding stage. The splitting of graphite materials after chemical modification by thermal and microwave-stimulated heating leads to the formation of graphene-like structures. The development of techniques for modifying electrically conductive porous samples of materials used as electrodes makes it possible to introduce nanographite particles under the influence of an electric field.
- Keywords
- модифицированные окисленные графиты термический и микроволновой нагрев
- Date of publication
- 15.05.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 37
References
- 1. Уббелоде А.Р., Льюис Ф.А. Графит и его кристаллические соединения. М.: Мир, 1965.
- 2. Chung D.D.L. // J. Mater. Sci. 2004. V. 39. P. 2645. https://doi.org/10.1023/B:JMSC.0000021439.18202.ea
- 3. Dresselhaus M.S., Dresselhaus G. // Adv. Phys. 2002. V. 51. P. 1. https://doi.org/10.1080/00018730110113644
- 4. Лозовик Ю.Е., Попов А.М. // УФН. 1997. Т. 167. № 7. С. 751.
- 5. Сорокина Н.Е., Авдеев В.В., Тихомиров А.С., Лутфуллин М.А., Саидаминов М.И. Композиционные наноматериалы на основе интеркалированного графита. Уч. пос. для студентов по специальности “Композиционные наноматериалы” М.: Изд-во Мос. гос. университета, 2010.
- 6. Novoselov K.S., Geim A.K., Morozov S.V. et al. // Science. 2004. V. 306. № 5696. P. 666. https://doi.org/10.1126/science.1102896
- 7. Stankovich S., Dikin D.A., Dommett G.H.B. et al. // Nature. 2006. V. 442. № 7100. P. 282.
- 8. Грайфер Е.Д., Макотченко В.Г., Назаров А.С., Ким С.-Дж., Федоров В.Е. // Успехи химии. 2011. Т. 80. № 8. С. 784.
- 9. Soldano С., Mahmood A., DujardinЕ. // Carbon. 2010. V. 48 № 8. P. 2127.
- 10. Singh V., Joung D., Zhai L. et al. // Prog. Mater. Sci. 2011. V. 56. P. 1178.
- 11. Фиалков А.С. Углеродные межслоевые соединения и композиты на их основе. М.: Аспект-Пресс, 1997.
- 12. Hummers W.S. Preparation of graphitic acid: Pat. USA 2798878, 1957.
- 13. Hummers W.S., Offman R.E. // J. Amer. Chem. Soc. 1958. V. 80. P. 1339.
- 14. Топоров Г.Н., Семенов М.В., Елисеева Р.А., Хачатурьян Т.К., Татаренко В.А. // Коллоид. журн. 1978. № 3. С. 575.
- 15. Фиалков А.С., Топоров Г.Н., Чеканова В.Д. // ЖФХ. 1963. Т. XXXVII. № 3. С. 566.
- 16. Рединдер П.А. // Коллоидный графит: сборник статей. М.: Институт прикладной минералогии, 1932. С. 87.
- 17. Кульметьева В.Б., Поносова А.А. // Соврем. пробл. науки и образования. 2015. № 2 (2). С. 11.
- 18. Горшенев В.Н., Бибиков С.Б, Кузнецов А.М. // ЖПХ. 2008. Т. 81. № 3. С. 442.
- 19. Куликовский Э.И, Орлов В.В., Бибиков С.Б., Горшенев В.Н. Сверхширокодиапазонное радиопоглощающее устройство: Пат. РФ № 2253927 // Б.И. 2005. № 16.
- 20. Гатин А.К., Гришин М.В., Простнев А.С., Сарвадий С.Ю., Степанов И.Г., Харитонов В.А., Шуб Б.Р. // Хим. физика. 2022. Т. 41. № 5. С. 221. https://doi.org/10.31857/S0207401X22050041
- 21. Кучеренко М.Г., Неясов П.П., Кручинин Н.Ю. // Хим. физика. 2023. Т. 42. № 5. С. 51. https://doi.org/10.31857/S0207401X23050059
- 22. Жуков А.М., Солодилов В.И., Третьяков И.В., Буракова Е.А., Юрков Г.Ю. // Хим. физика. 2022. Т. 41. № 9. С. 64 https://doi.org/10.31857/S0207401X22090138
- 23. Боднева В.Л., Кожушнер М.А., Лидский Б.В., Посвянский В.С., Трахтенберг Л.И. // Хим. физика. 2023. Т. 42. № 7. С. 3. https://doi.org/10.31857/S0207401X2307004X