RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Reaction mechanism of O₃ uptake on MgCl₂ · 6H₂O as a sea salt component

PII
10.31857/S0207401X24060069-1
DOI
10.31857/S0207401X24060069
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 6
Pages
53-63
Abstract
Using a coated-insert flow tube reactor coupled to mass spectrometer with molecular beam sampling, the uptake of O₃ on a salt film coating of MgCl₂·6H₂O was studied under variation in the reactant concentration ([O₃] = 2.5 ‧ 10¹³ – 1.6 ‧ 10¹⁴ cm⁻³), humidity ([RH] = 0–24%), and reactor temperatures of 254 and 295 K. The time-dependent character of the uptake coefficient g(t) = γr exp(−t/τ) was obtained, the γr and t parameters being dependent on [O₃]. Using the method of mathematical modeling, based on the shape of the dependence of the uptake coefficient on ozone concentration and its time history, the uptake mechanism was proposed and the elementary kinetic parameters were assessed, on the basis of which it is possible to extrapolate the temporal behavior of the uptake coefficient to tropospheric conditions at arbitrary ozone concentrations. Based on their obtained dependencies, at room temperature the uptake occurs according to the reaction mechanism of an adsorbed molecule on the surface of the substrate: the mechanism includes the stage of reversible adsorption, formation of an adsorbed complex followed by its unimolecular decomposition with the release of molecular chlorine into the gas phase. At low temperatures, the uptake proceeds through recombination via the Eley–Ridil’s reaction mechanism: it includes reversible adsorption, formation of a surface complex, its reaction with an ozone molecule from the gas phase followed by the release of an oxygen molecule into the gas phase. In this case, no chlorine is formed. No dependence of the uptake coefficient on relative humidity was found in the range of RH from 0 to 24% at T = 254 K.
Keywords
химия тропосферы озон компонент морской соли MgCl₂∙6H₂O коэффициент захвата механизм захвата коэффициент Ленгмюра константа скорости реакции
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
2

References

  1. 1. Shinozuka Y., Clarke A.D., Howell S.G. et al. // J. Geophys. Res. 2004. V. 109. P. D24201; https://doi.org/10.1029/2004JD004975
  2. 2. Bondy A.L., Wang B., Laskin A. et al. // Environ. Sci. Technol. 2017. V. 51. P. 9533; https://doi.org/10.1021/acs.est.7b02085
  3. 3. Liu S., Liu C.-C., Froid K.D. et al., // PNAS. 2020. V. 118. № 9. P. e2020583118; https://doi.org/10.1073/pnas.2020583118
  4. 4. Liao H., Chen W.-T., Seinfeld J.H. // J. Geophys. Res. 2006. V. 111. P. D12304; https://doi.org/10.1029/2005JD006852
  5. 5. Vignati E., Facchini M.C., Rinaldi M. et al. // Atmos. Environ. 2010. V. 44. P. 670; https://doi.org/10.1016/atmosenv.2009.11.013
  6. 6. Su B., Wang T., Zhang G. et al. // Atmos. Environ. 2022. V. 290. P. 119365; https://doi.org/10.1016/j.atmosenv.2022.119365
  7. 7. Jaeglé L., Quinn P.K., Bates T.S. et al. // Atmos. Chem. Phys. 2011. V. 11. P. 3137; https://doi.org/1010.5194/acp-11-3137-2011
  8. 8. Quinn P.K., Coffman D.J. // J. Geophys. Res. 1998. V. 103. P. D16575; https://doi.org/10.1029/97JD03757
  9. 9. Bates T.S., Quinn P.K., Coffman D.J. et al., // J. Geophys. Res. 2001. V. 106. P. D20767; https://doi.org/10.1029/2000JD900578
  10. 10. Spada M., Pérez Garcia-Pando C., Janjic Z., Baldasano J.M. // Atmos. Environ. 2015. V. 101. P. 41; http://doi.org/10.1016/j.atmosenv.2014.11.019
  11. 11. Piazzola J., Despiau S. //J. Aerosol Sci. 1997. V. 28. P. 1579; https://doi.org/10.1016/S0021-8502 (97)00020-7
  12. 12. Murphy D.M., Froyd K.D., Bian H. et al., // Atmos. Chem. Phys. 2019. V. 19. P. 4093; https://doi.org/10.5194/acp-19-4093-2019
  13. 13. Bian H., Froyd K., Murphy P.M. et al. // Atmos. Chem. Phys. 2019. V. 19. P. 10773; https://doi.org/10.5194/acp-19-10773-2019
  14. 14. Deuzé J.L., Herman M., Goloub P. et al. // Geophys. Res. Lett. 1999. V. 26. P. 1421; https://doi.org/10.1029/1999GL900168
  15. 15. Feng L., Shen H., Zhu Y. et al., // Sci. Rep. 2017. V. 7. P. 41260; https://doi.org/10.1038/srep41260
  16. 16. Никольский Б.П. Справочник химика. М: ГНТИ хим. лит-ры, 1966.
  17. 17. Finlayson-Pitts B.J. // Chem. Rev. 2003. V. 103. P. 4801; https://doi.org/10.1021/cr020653t
  18. 18. Rossi M.J. // Chem. Rev. 2003. V. 103. P. 4823; https://doi.org/10.1021/cr020507n
  19. 19. Abbatt J.P.D., Waschewsky G.C.G. // J. Phys. Chem. 1998. V. 102. P. 3719; https://doi.org/10.1021/jp980932d
  20. 20. Ларин И.К., Алоян А.Е., Ермаков А.Н. // Хим. физика. 2021. Т. 40. № 5. С. 86; https://doi.org/10.31857/S0207401X21050095
  21. 21. Sander E., Crutzen P.J. // J. Geophys. Res. 1996. V. 101. P. D9121; https://doi.org/10.1029/95JD03793
  22. 22. Lehler E., Hönninger G., Platt U. // Atmos. Chem. Phys. 2004. V. 4. P. 2427; https://doi.org/10.5194/acp-4-2427-2004
  23. 23. Cao L., Fan L., Li S., Yang S. // Atmos. Chem. Phys. 2022. V. 22. P. 3875; https://doi.org/10.5194/acp-22-3875-2022
  24. 24. Womack C.C., Chace W.S., Wang S. et al. // Environ. Sci. Technol. 2023. V. 57. P. 1870; https://doi.org/10.1021/acs.est.2c05376
  25. 25. Keene W.C., Stutz J., Pszenny A.A.P. et al. // J. Geophys. Res. 2007. V. 112. P. D10S12; https://doi.org/10.1029/2006JD007689
  26. 26. Pechtl S., von Glasow R. // Geophys. Res. Lett. 2007. V. 34. P. L11813; https://doi.org/10.1029/2007GL029761
  27. 27. Oum K.W., Lakin M.J., DeHaan D.O. et al. // Science 1998. V. 279. P. 74; https://doi.org/10.1126/science279.5347.74
  28. 28. Евстафьева Е.В., Лапченко В.А., Макарова А.С. и др. // Хим. физика. 2019. Т. 38. № 11. С. 42; https://doi.org/10.1134/S0207401X19110037
  29. 29. Shi W., Sun Q., Du P. et al. // Environ. Sci. Technol. 2020. V. 54. P. 2859; https://doi.org/10.1021/acs.est.9b05978
  30. 30. Jacob D.J. // Atmos. Environ. 2000. V. 34. P. 2131; https://doi.org/10.1016/S1352-2310 (99)00462-8
  31. 31. Monks P.S., Archibald A.T., Colette A. et al. // Atmos. Chem. Phys. 2015. V. 15. P. 8889; https://doi.org/10.5194/acp-15-8889-2015
  32. 32. Andersen S.T., Nelson B.S., Read K.A. et al. // Atmos. Chem. Phys. 2022. V. 22. P. 15747; https://doi.org/10.5194/acp-22-15747-2022
  33. 33. Ларин И.К. // Хим. физика. 2022. Т. 41. № 5. С. 37; https://doi.org/10.31857/S0207401X22050089
  34. 34. Cristofanelli P., Putero D., Bonasoni P. et al. // Atmos. Environ. 2018. V. 177. P. 54; https://doi.org/10.1016/j.atmosenv.2018.01.007
  35. 35. Derwent R.G., Parrish D.D. // Atmos. Environ. 2022. V. 286. P. 119222; https://doi.org/10.1016/j.atmosenv.2022.119222
  36. 36. Sun L., Xue L., Wang Y. et al. // Atmos. Chem. Phys. 2019. V. 19. P. 1455; https://doi.org/10.5194/acp-19-1455-2019
  37. 37. Riley M.L., Watt S., Jiang N. // Atmos. Environ. 2022. V. 281. P. 119143; https://doi.org/10.1016/j.atmosenv.2022.119143
  38. 38. Nussbaumer C., Cohen R.C. // Environ. Sci. Technol. 2020. V. 54. P. 15652; https://doi.org/10.1021/acs.est.0c04910
  39. 39. Yusoff M.F., Latif M.T., Juneng L. et al. // Atmos. Environ. 2019. V. 207. P. 105; https://doi.org/10.1016/j.atmosenv.2019.03.023
  40. 40. Gong C., Liao H. // Atmos. Chem. Phys. 2019. V. 19. P. 13725; https://doi.org/10.5194/acp-19-13725-2019
  41. 41. Wang W., Yuan B., Peng Y. et al. // Atmos. Chem. Phys. 2022. V. 22. P. 4117; https://doi.org/10.5194/acp-22-4117-2022
  42. 42. Alebic-Juretic A., Cvitas T., Klasinc L. // Environ. Monitor. Assess. 1997. V. 44. P. 241; https://doi.org/10.1023/A:1005788624410
  43. 43. Oum K.W., Lakin M.J., Finlayson-Pitts B.J. // Geophys. Res. Lett. 1998. V. 25. P. 3923; https://doi.org/10.1029/1998GL900078
  44. 44. Hirokawa J., Onaka K., Kajii Y., Akimoto H. // Geophys. Res. Lett. 1998. V. 25. P. 2449; https://doi.org/10.1029/98GL01815
  45. 45. Mochida M., Hirokawa J., Akimoto H. // Geophys. Res. Lett. 2000. V. 27. P. 2629; https://doi.org/10.1029/1999GL010927
  46. 46. Sadanaga Y., Hirokawa J., Akimoto H. // Geophys. Res. Lett. 2001. V. 28. P. 4433; https://doi.org/10.1029/2001GL013722
  47. 47. Зеленов В.В., Апарина Е.В., Чудинов А.В., Каштанов С.А. // Хим. физика. 2010. Т. 29. № 5. С. 39.
  48. 48. Зеленов В.В., Апарина Е.В. // Хим. физика. 2023. Т. 42. № 1. С. 73; https://doi.org/10.31857/S0207401X23010144
  49. 49. Laidler K.J. Chemical kinetics. 2nd ed. New York: McGraw-Hill, 1965.
  50. 50. Utter R.G., Burkholder J.B., Howard C.J., Ravishankara A.R. // J. Phys. Chem. 1992. V. 96. P. 4973; https://doi.org/10.1021/j100191a045
  51. 51. Moreno C., Baeza-Romero M.T. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 19835; https://doi.org/10.1039/c9cpo3430g
  52. 52. Ивлиев Л.С. // Химический состав и структура атмосферных аэрозолей. Л.: Лен. Университет, 1982.
  53. 53. Brasseur G., Solomon S. // Aeronomy of the Middle Atmosphere. 3rd ed. Dordrecht, Netherlands: Springer, 2005.
  54. 54. Kolb C.E., Cox R.A., Abbatt J.P.D., Ammann M., Davis E.J. et al. // Atmos. Chem. Phys. 2010. V. 10. P. 10561; https://doi.org/10.5194/acp-10-10561-2010
  55. 55. Зеленов В.В., Апарина Е.В. // Хим. физика 2021. Т. 40. № 10. С. 76; https://doi.org/10.31857/S0207401X21100137
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library