- PII
- 10.31857/S0207401X24060086-1
- DOI
- 10.31857/S0207401X24060086
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 6
- Pages
- 72-80
- Abstract
- Due to the increase in radon emanation, the conductivity in the surface layer of air increases, which causes variations in the electric fields in the low atmosphere and according to some hypotheses in the ionosphere. There are known proposals on the possibility of using such ionospheric disturbances as precursors of earthquakes. We simulate the ionospheric electric fields in the framework of a quasi-stationary model of the conductor consisting of the atmosphere including the ionosphere. The consequences of the paradoxical point of view about a decrease in the conductivity of surface air with an increase in radon content are also considered. Even with extreme radon emanation, disturbances of the ionospheric electric field are obtained three to four orders of magnitude smaller than the supposed precursors of earthquakes.
- Keywords
- атмосфера ионосфера эманация радона проводимость электрическое поле математическое моделированиеatmosphere
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 2
References
- 1. Голубков Г.В., Адамсон С.О. и др. // Хим. физика. 2022. Т. 41. № 5. С. 531; https://doi.org/10.31857/S0207401X22050053
- 2. Pulinets S., Ouzounov D., Karelin A., Boyarchuk K. Earthquake Precursors in the Atmosphere and Ionosphere. New Concepts. Dordrecht: Springer Nature, 2022.
- 3. Xu T., Hu Y., Wu J. et al. // Adv. Space Res. 2011. V. 47. № 6. P. 1001; https://doi.org/10.1016/j.asr.2010.11.006
- 4. Klimenko M.V., Klimenko V.V., Zakharenkova I.E. et al. // Adv. Space Res. 2011. V. 48. № 3. P. 488; https://doi.org/10.1016/j.asr.2011.03.040
- 5. Harrison R.G., Aplin K.L., Rycroft M.J. // J. Atmos. Sol.-Terr. Phys. 2010. V. 72. № 5–6. P. 376; https://doi.org/10.1016/j.jastp.2009.12.004
- 6. Denisenko V.V., Rycroft M.J., Harrison R.G. // Surv. Geophys. 2019. V. 40. № 1. P. 1; https://doi.org/10.1007/s10712-018-9499-6
- 7. Денисенко В.В. // Матер. Шестой Всеросс. конф. “Глобальная электрическая цепь”. Ярославль: Филигрань, 2023. С. 48.
- 8. Molchanov O., Hayakawa M. Seismo-electromagnetics and related phenomena: history and latest results. Tokyo: TERRAPUB, 2008.
- 9. Чэнсюнь Ю., Чжицзянь Л. и др. // Хим. физика. 2022. Т. 41. № 10. С. 28; https://doi.org/10.31857/S0207401X22100041
- 10. Ларин И.К. // Хим. физика. 2022. Т. 41. № 5. С. 371; https://doi.org/10.31857/S0207401X22050089
- 11. Брюнелли Б.Е., Намгаладзе А.А. Физика ионосферы. М.: Наука, 1988.
- 12. Nesterov S., Denisenko V., Boudjada M.Y., Lammer H. // Proc. 5th Int. Conf. Trigger Effects in Geosystems. Springer, Cham: 2019. P. 559; https://doi.org/10.1007/978-3-030-31970-0_59
- 13. The Earth’s Electrical Environment. Washington, DC: The National Academies Press, 1986; https://doi.org/10.17226/898
- 14. Golubenko K., Rozanov E., Mironova I., Karagodin A., Usoskin I. // Geophys. Res. Lett. 2020. V. 47. № 12. e2020GL088619; https://doi.org/10.1029/2020GL088619
- 15. Клименко В.В., Денисенко В.В., Клименко М.В. // Хим. физика. 2022. Т. 41. № 10. С. 84; https://doi.org/10.31857/S0207401X22100077
- 16. Денисенко В.В., Помозов Е.В. // Вычислит. технологии. 2010. Т. 15. № 5. С. 34. Мареев Е.А. // УФН. 2010. Т. 180. № 5. С. 527; https://doi.org/10.3367/UFNe.0180.201005h.0527
- 17. Denisenko V.V., Rozanov E.V., Belyuchenko K.V. et al. // Proc. VIII Int. Conf. “Atmosphere, Ionosphere, Safety (AIS-2023)”. Kaliningrad, 2023. P. 117.
- 18. Schraner M., Rozanov E., Schnadt Poberaj C. et al. // Atmosph. Chem. Phys. 2008. V. 8. № 19. P. 5957;https://doi.org/10.5194/acp-8-5957-2008